Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác HBA có:
góc B chung
BAC=BHA ( =90 )
=> tam giác ABC đồng dạng với tam giác HBA
b) Xét tam giác ABC và tam giác HAC có:
BAC=AHC ( =90)
góc C chung
=> tam giác ABC đồng dạng với tam giác HAC
c) Xét tam giác HBA và tam giác HAC có:
góc A chung
BHA=AHC ( =90 )
=> tam giác HBA đồng dạng với tam giác HAC
=> \(\dfrac{HB}{AH}=\dfrac{HA}{HC}\)
=> AH^2=HB.HC
Bài 3:
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
DO đó: ΔHBA\(\sim\)ΔABC
SUy ra: BA/BC=BH/BA
hay \(BA^2=BH\cdot BC\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó: BD=60/7(cm); CD=80/7(cm)
A B C H
\(Xét\Delta ABC\) VÀ \(\Delta HBA\) CÓ :
\(\widehat{A}\)= \(\widehat{AHB}\)= 90 ĐỘ
\(\widehat{B}\)CHUNG
\(\Rightarrow\)\(\Delta ABC\) ĐỒNG DẠNG \(\Delta HBA\)(g.g)
b, XÉT \(\Delta ABC\) VÀ \(\Delta HAC\)CÓ
\(\widehat{A}\)=\(\widehat{AHC}\) =90 ĐỘ
\(\widehat{C}\) CHUNG
\(\Rightarrow\)\(\Delta ABC\)ĐỒNG DẠNG \(\Delta HAC\)(G.G)
C, TA CÓ : \(\Delta ABC\)ĐỒNG DẠNG \(\Delta HBA\)(THEO CÂU a)
\(\Delta ABC\)ĐỒNG DẠNG \(\Delta HAC\)(THEO CÂU b)
\(\Rightarrow\)\(\Delta HBA\) ĐỒNG DẠNG \(\Delta HAC\)(THEO TÍNH CHẤT BẮC CẦU)
\(\Rightarrow\)\(\frac{HB}{HA}\)= \(\frac{HA}{HC}\)
\(\Rightarrow\) HA.HA= HB.HC
\(\Rightarrow\)\(^{HA^2}\)=HB.HC
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC