\(\Delta ABC\) . M là trung điểm của BC. Kẻ BH\(\perp\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có

MB=MC

\(\widehat{HMB}=\widehat{KMC}\)

Do đó: ΔHMB=ΔKMC

Suy ra: BH=CK

2: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

Suy ra: BK//HC

4 tháng 3 2020

A B C F H E M K

d, cm tam giác EMK = tam giác FMH (c-g-c)

=> EM = MF => M là trđ của EF

Cm tam giác BEH = tam giác FHE (c-g-c) => BH // EF  => EF _|_ AM

=> tam giác AEF cân tại A 

không hiểu chỗ nào thì hỏi

a) Xét Δ B H M ; Δ C K M ΔBHM;ΔCKM có :

ˆ B H M = ˆ C K M ( = 90 o − g t )

BHM^=CKM^(=90o−gt)

B M = M C ( g t ) BM=MC(gt) ˆ H M B = ˆ K M C HMB^=KMC^ (đối đỉnh)

=> Δ B H M = Δ C K M ΔBHM=ΔCKM (cạnh huyền - góc nhọn)

=> ˆ H B M = ˆ K C M HBM^=KCM^ (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> BH // KC ( đ p c m ) BH // KC(đpcm)

Và từ Δ B H M = Δ C K M ΔBHM=ΔCKM (cmt)

=> B H = C K BH=CK (2 cạnh tương ứng)

b) Xét Δ H M C ; Δ K M B ΔHMC;ΔKMB có :

B M = M C ( g t )

BM=MC(gt) ˆ H M C = ˆ K M B HMC^=KMB^ (đối đỉnh)

H M = M K HM=MK (do Δ B H M = Δ C K M ΔBHM=ΔCKM -cmt)

=> Δ H M C ; Δ K M B ΔHMC;ΔKMB

=> Δ H M C = Δ K M B ΔHMC=ΔKMB (c.g.c)

=> ˆ H C M = ˆ K B M HCM^=KBM^ (2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> BK // CH ( đ p c m ) BK // CH (đpcm)

Có : Δ H M C = Δ K M B ΔHMC=ΔKMB (cmt)

=> B K = C H BK=CH (2 cạnh tương ứng)

c) Ta có : { H F = F C B E = E K {HF=FCBE=EK (gt)

Mà : B K = H C ( c m t ) BK=HC(cmt)

=> H F = F C = B E = E K HF=FC=BE=EK

Xét Δ B E M ; Δ F C M ΔBEM;ΔFCM có :

B M = M C ( g t ) BM=MC(gt) ˆ M B E = ˆ M C F ( s l t )

MBE^=MCF^(slt) B E = F C ( c m t ) BE=FC(cmt)

=> Δ B E M = Δ F C M ( c . g . c ) ΔBEM=ΔFCM(c.g.c)

=> E M = F M EM=FM(2 cạnh tương ứng)

=> M Là trung điểm của EF Do đó : E, ,M, F thẳng hàng

11 tháng 9 2017

Hỏi đáp Toán

a) Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\CK\perp AM\end{matrix}\right.\Rightarrow BH\) // CK

b) Xét \(\Delta BHM\) vuông tại H và \(\Delta CKM\) vuông tại K có:

BM = CM (suy từ gt)

\(\widehat{BMH}=\widehat{CMK}\left(đ^2\right)\)

\(\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\)

\(\Rightarrow HM=KM\)

\(\RightarrowĐPCM.\)

c) Xét \(\Delta CHM;\Delta BKM:\)

BM = CM

\(\widehat{CMH}=\widehat{BMK}\left(đđ\right)\)

HM = KM (câu b)

=> ...

=> \(\widehat{CHM}=\widehat{BKM}\)

mà 2 góc ở vị trí so le trog nên HC // BK.

7 tháng 1 2019

a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

Hay \(\widehat{ABD}=\widehat{ACE}\)

Theo định lý Cos ta có

\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)

\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)

Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE

Nên AD = AE hay tam giác ADE cân tại A

b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)

Nên góc KCE = góc DBH

Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)

Xét tam giác HBA và tam giác ACK vuông có :

+ góc HBA = góc KCA

+ AB = AC

\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)

7 tháng 1 2019

c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)

\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)

\(\widehat{HBA}=\widehat{ACK}\)

\(\widehat{ABC}=\widehat{ACB}\)

Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O 

d) Xét tam giác AMB và tam giác AMC 

+ AM chung 

+ BM = MC (gt)

+ AB = AC (gt)

Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c

Và hai góc BAM = góc CAM 

Hay AM là tia phân giác của góc BAC

Xét tam giác AOB và tam giác ACO

+ AB = AC (gt)

+ OB = OC (cmt )

+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)

Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c

Và góc BAO = góc CAO

Hay AO là phân giác của góc BAC

Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng

9 tháng 1 2018

A B C M K H

a) xét \(\Delta HBM\) vuông tại \(H\)và \(\Delta KCM\)vuông tại \(K\) ta có:

\(\widehat{HMB}=\widehat{KMC}\) ( 2 góc đối đỉnh)

\(BM=MC\) ( giả thiết)

\(\Rightarrow\Delta\) vuông \(HBM=\Delta\) vuông \(KCM\) ( cạnh huyền - góc nhọn)

\(\Rightarrow BH=CK\)( 2 cạnh tương ứng)

vậy \(BH=CK\)

b) theo câu a) \(\Delta HBM=\Delta KCM\)

\(\Rightarrow\) \(MH=MK\) ( 2 cạnh tương ứng)

xét \(\Delta HCM\)và \(\Delta KBM\)có :

\(MH=MK\)( cmt)

\(BM=MC\)

\(\widehat{HMC}=\widehat{KMB}\) ( 2 góc đối đỉnh)

\(\Rightarrow\Delta HCM=\Delta KBM\)  \(\left(c.g.c\right)\)

\(\Rightarrow\widehat{HCM}=\widehat{KBM}\) ( 2 goc tương ứng)

\(\Rightarrow HC\)song song \(BK\) ( 2 góc bằng nhau ở vị trí so le trong)

vậy \(HC\)song song \(BK\)

9 tháng 1 2018

A B C M H K

a, Xét hai tam giác vuông BHM và CKM có:

góc BMH = góc CMK (đối đỉnh)

MB = MC (gt)

Vậy tam giác BHM = tam giác CKM (cạnh huyền - góc nhọn)

=> BH = CK (2 cạnh tương ứng)

b, Vì tam giác BHM = tam giác CKM => MH = MK (2 cạnh tương ứng)

Xét tam giác BMK và tam giác CMH có:

MB = MC (gt)

góc BMK = góc CMH (đối đỉnh)

MH = MK (cmt)

Vậy tam giác BMK = tam giác CMH (c.g.c)

=> góc MBK = góc MCH (2 góc tương ứng)

Mà góc MBK và góc MCH là 2 góc so le trong

=> BK // CH

9 tháng 1 2018

A B C H M K

a) Xét \(\Delta BMH\)\(\Delta CMK\) có :

\(\widehat{BHM}=\widehat{CKM}\left(=90^o\right)\)

\(BM=CM\left(gt\right)\)

\(\widehat{BMH}=\widehat{CMK}\) (đối đỉnh)

=> \(\Delta BMH\) = \(\Delta CMK\) (g.c.g)

=> \(BH=CK\) (2 cạnh tương ứng)

b) Từ \(\Delta BMH\) = \(\Delta CMK\) (cmt)

=> \(HM=HK\) (2 cạnh tương ứng)

Xét \(\Delta BMK\)\(\Delta HMC\) có :

\(HM=HK\) (cmt)

\(\widehat{BMK}=\widehat{CMH}\) (đối đỉnh)

\(BM=MC\left(gt\right)\)

=> \(\Delta BMK\) = \(\Delta HMC\) (c.g.c)

=> \(\widehat{KBM}=\widehat{HCM}\) (2 góc tương ứng)

Mà : 2 góc này ở vị trí so le trong

=> \(\text{BK // CH }\left(đpcm\right)\)

21 tháng 4 2017

A B C 3 4 M H K I

21 tháng 4 2017

a) áp dụng định lí pitago

b) Xét tam giác bằng nhau theo trường hợp ch-gn

c) IH < MK do MK = MH . mà MH < IH ( quan hệ giữa cạnh và góc trong 1 tam giác )

d) BH + BK = BK + CK >BC ( BĐT tam giác )