\(\Delta ABC\). Gọi M và N lần lượt là trung điểm của AB và AC. Trên tia đối của tia...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

a) Xét \(\Delta DNA\) và \(\Delta BCN\), có:

DN = NB (gt)

góc N1 = N2 (2 góc đối đỉnh)

AN = CN (N là TĐ của AC)

->\(\Delta DNA=\Delta BCN\) (c.g.c)

-> AD = BC (2 cạnh tương ứng)

-> góc A1 = góc ACB ( 2 góc tương ứng)

Mà góc A1 và góc ACB là 2 góc SLT 

-> AD//BC

Mình chỉ làm được ý a thôi hihi thông cảm

7 tháng 11 2016

Hình học lớp 7

11 tháng 12 2021

CÍU

 

11 tháng 12 2021

Đợi mình tí!

24 tháng 10 2021

a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)

Do đó \(AD=BC\)

b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)

Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC

c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC

Mà AE//BC nên A,D,E thẳng hàng

Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)

Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)

Vậy A là trung điểm DE

5 tháng 1 2018

Câu hỏi của Nguyễn Hoài Thương - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

a: Xet tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD=BC

b: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hình bình hành

=>AE//BC

a: Xét tứ giác ABCQ có 

N là trung điểm của AC

N là trung điểm của BQ

Do đó: ABCQ là hình bình hành

Suy ra: AQ//BC và AQ=BC

Xét tứ giác ACBP có

M là trung điểm của AB

M là trung điểm của CP

Do đó: ACBP là hình bình hành

Suy ra: AP//BC và AP=BC

Ta có: AQ//BC

AP//BC

mà AQ,AP có điểm chung là A

nên Q,A,P thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN=PQ/4

=>PQ=4MN

20 tháng 11 2017

bài 2) 

   Ta có:  16x : 2y = 128

    \(\Leftrightarrow\)24x : 2y = 27

    \(\Leftrightarrow\)24x - y = 27

   \(\Leftrightarrow\)4x - y = 7   (1)

Ta lại có:   x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y   (2)

Thay (2) vào (1) ta đc: 

            4*3y - y = 7

     \(\Leftrightarrow\)11y = 7

      \(\Leftrightarrow\)y = \(\frac{7}{11}\)

       \(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)

20 tháng 11 2017

3, 

A B C M N E F

a, Xét t/g AME và t/g BMC có:

MA = MB (gt)

ME = MC (gt)

góc AME = góc BMC (đối đỉnh)

Do đó t/g AME = t/g BMC (c.g.c)

b, Vì t/g AME = t/g BMC (câu a) =>  góc AEM = góc BCM (2 góc tương ứng)

Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC

c, Xét t/g ANF và t/g CNB có:

AN = CN (gt)

NF = NB (gt)

góc ANF = góc CNB (đối đỉnh)

Do đó t/g ANF = t/g CNB (c.g.c)

=> AF = BC (2 cạnh tương ứng)

d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)

Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC

Ta có: AE // BC, AF // BC 

=> AE trùng AF

=> A,E,F thẳng hàng (1)

Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)

Ta lại có: AE = BC, AF = BC => AE = AF (2)

Từ (1) và (2) => A là trung điểm của EF