K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2020

A B C D K E F H

a, ABCD là hình thang (gt) => AB // CD (đn)

=> OA/OC = OB/OD (talet)                                          (1)

có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)

=> FO/OB = OE/OA ; xét tg AOB 

=> FE // AB (talet đảo)

b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE 

=> ^DAO = ^OEB và ^ADO = ^OBE (đl)

xét tg ADO và tg EBO 

=> tg ADO đồng dạng với tg EBO (g-g)

=> AO/OE = DO/OB                  (2)

+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)

=> AB/EF = CD/AB 

=> AB^2  = EF.CD 

c, kẻ AH _|_ BD ; CK _|_ BD

có S1 = OB.AH/2 ; S2 = OD.CK/2  => S1.S2 = OB.AH.OD.CK/4

CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4

=> S1.S2 = S3.S4

1 tháng 3 2017

A B C D O M N

c)\(\Delta AOB,\Delta BOC\)có chung đường cao hạ từ B nên\(\frac{S_1}{S_4}=\frac{OA}{OC}\left(1\right)\)

\(\Delta AOD,\Delta DOC\)có chung đường cao hạ từ D nên\(\frac{S_3}{S_2}=\frac{OA}{OC}\left(2\right)\)

Từ (1) và (2),ta có\(\frac{S_1}{S_4}=\frac{S_3}{S_2}\Rightarrow S_1.S_2=S_3.S_4\)

d) Áp dụng hệ quả định lí Ta-lét,ta có :

\(\Delta ADB\)có OM // AB nên\(\frac{OM}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ABC\)có ON // AB nên\(\frac{ON}{AB}=\frac{OC}{AC}\left(4\right);\frac{ON}{AB}=\frac{NC}{BC}\left(5\right)\)

\(\Delta COD\)có AB // CD nên\(\frac{OD}{DB}=\frac{OC}{AC}\left(6\right)\)

\(\Delta BDC\)có ON // DC nên\(\frac{ON}{CD}=\frac{BN}{NC}\left(7\right)\)

Từ (3),(5),(6),ta có\(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\Rightarrow MN=2ON\Rightarrow\frac{1}{ON}=\frac{2}{MN}\)

Cộng (5) và (7),vế theo vế,ta có :\(\frac{ON}{AB}+\frac{ON}{CD}=\frac{BN}{BC}+\frac{NC}{BC}\Leftrightarrow ON.\left(\frac{1}{AB}+\frac{1}{CD}\right)=1\Rightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{ON}=\frac{2}{MN}\)

P/S : Bạn xem lại đề để có thể xác định E,F nhé

1 tháng 3 2017

chịu rùi tớ không biết !!!

30 tháng 12 2015

tick đi, t cho mượn vở

 

13 tháng 2 2022

AH, BE cùng vuông góc d nên // nhau
AB//HE (AB//d đề cho)
=> ABEH là hình chữ nhật (2 cặp cạnh đối diện song song)
=> Diện tích ABEH = AB x BE (1)
Gọi M là giao điểm d và AD
gọi N là điểm thuộc d sao cho đối xứng với M qua I => IM = IN
Lại có IC = ID (I là trung điểm CD)
=> CNDM là hình bình hành => CN//MD hay CN//AD
Mà BC//AD (hình thang)
Nên B,C,N thẳng hàng
Chứng minh tam giác ICN = IDM (cạnh-góc-cạnh, 2 cặp cạnh bằng nhau chứng minh trên, góc đối đỉnh bằng nhau)
=> S hình thang ABCD = S hình bình hành ABNM (ABNM là hbh có 2 cặp cạnh //) (2)
BE vuông góc MN (BE vuông góc d) => S ABNM = AB x BE (3)
Từ (1) (2) (3)=> S ABCD = S ABEH

29 tháng 3 2017

có lẽ SABC=82 (cm2)

29 tháng 3 2017

Giải ra đi b :))

18 tháng 5 2020

c, Theo phần b có , tgiac AHD đồng dạng tgiac CED

=? HD/ED = AD/CD

 Xét tgiac HDE và tgiac ADC, có:

 góc HDE = góc ADC ( 2 góc đối đỉnh)

HD/ED = AD/ CD (cmt)

=> tg HDE đồng dậng tg ADC ( c.g.c)

d, Áp dụng định lý Pytago vào tg ABC , có:

BC^2 = AB^2 + AC^2 = 6^2 + 8^2

=>BC = 10 (cm)

Có : BA^2 = BH. BC

=> BH = 3,6 = HD

=> BD = 2BH = 7,2(cm)

=> DC = BC - BD = 2,8 (cm)

Chứng minh tgiac AHB = tg AHD (c.g.c)

=> AD = AB = 6 (cm)

theo phần b, tg CDE đồng dạng th ADH

=> Dc/DA = DE/DH

=> DE = 1,68

Áp dụng đính lý pytagp vào tg CED

=> DC^2 = EC^2 + De^2

=> EC = 2,24

=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)

Bài làm

Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài, 

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác ABC ~ Tam giác HBA ( g - g )

b) Xét tam giác AHD và tam giác CED có:

\(\widehat{AHD}=\widehat{CED}=90^0\)

\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )

=> Tam giác AHD ~ Tam giác CED ( g - g )

=> \(\frac{AH}{EC}=\frac{AD}{DC}\)

\(\Rightarrow AH.CD=AD.EC\)( đpcm )

c) Vì tam giác AHD ~ Tam giác CED ( cmt )

=> \(\frac{HD}{DE}=\frac{AD}{DC}\)

Xét tam giác HDE và tam giác ADC có:

\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )

\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )

=> Tam giác HDE ~ tam giác ADC ( g - c - g )

d) Xét tam giác ABC vuông ở A có:

Theo Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 62 + 82 

=> BC2 = 36 + 64

=> BC2 = 100

=> BC = 10 ( cm )

Diện tích tam giác ABC là:

SABC = 1/2 . AB . AC

SABC = 1/2 . AH . BC

=> AB . AC = AH . BC

hay 6 . 8 = AH . 10

=> AH = 4,8 ( cm )

Xét tam giác AHC vuông ở H có:

Theo pytago có:

HC2 = AC2 - AH2 

hay HC2 = 82 - 4,82 

=> HC2 = 64 - 23,04

=> HC = 6,4 ( cm )

Ta có: BH + HD + DC = BC

=> HD + HD + DC = BC

=> 2HD + HC - HD = BC

Hay 2HD + 6,4 - HD = 10

=> HD + 6,4 =10

=> HD = 3,6 ( cm )

Ta có: HD + DC = HC 

hay 3,6 + DC = 6,4

=> DC = 2,8

Vì D đối xứng với B qua H

=> AH là trung trực của DB

=> AB = AD

=> Tam giác ABD cân tại A

=> AB = AD = 6 cm 

vì tam giác AHD ~ tam giác CED ( theo câu b )

=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)

hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)

=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )

=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )

Diện tích tam giác DEC là:

SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )

e) CHo mình xin nghỉ.