K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Violympic toán 7

a) Vì tam giác ABC cân tại A

=> AB = AC và Góc ABC = Góc ACB

Xét tam giác AHC và tam giác AHB, ta có:

Góc AHB = AHC ( = 90 độ )

AB = AC (cmt)

Góc ABC = Góc ACB ( cmt)

=> Tam giác AHC = Tam giác AHB ( ch-gn )

b) Vì tam giác AHC = Tam giác AHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét tam giác BHN và tam giác CHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> Tam giác BHN = Tam giác CHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c) Xét tam giác MHC và tam giác QHB, ta có:

Góc HMC = Góc HQB ( = 90 độ )

Góc MCH = Góc QBH ( do tam giác ABC cân tại A )

HC = HB ( câu b )

=> Tam giác MHC = Tam giác QHB ( ch-gn )

=> Góc MHC = Góc QHB

Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )

=> Góc QHB = Góc BHN

Xét tam giác AQH và tam giác AMH, ta có:

Góc AQH = Góc AMH ( = 90 độ )

AH là cạnh huyền chung

Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )

=> Tam giác AQH = Tam giác AMH ( ch-gn )

=> QH = HM ( Hai cạnh tương ứng )

Mà HM = HN ( gt )

=> QH = HN

Gọi K là trung điểm của QN

Xét tam giác KHQ và tam giác KHN, ta có:

HQ = HN ( cmt )

Góc QHB = Góc BHN ( cmt )

HK là cạnh chung

=> Tam giác KHQ = Tam giác KHN ( c-g-c )

=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )

Mà góc QKH và góc NKH là hai góc kề bù

=> Góc QKH = Góc NKH = 180/2 = 90 độ

=> HK là đường trung trực của QN

Hay BC là đường trung trực của QN

a: Xét ΔAHC vuôg tại H và ΔAHB vuông tại H có

AB=AC

AH chung

DO đo: ΔAHC=ΔAHB

b: Xét tứ giác BMCN có

H là trung điểm của BC

H là trung điểm của MN

DO đó: BMCN là hình bình hành

Suy ra: BN//AC

c: Xét ΔAQH vuông tạiQ và ΔAMH vuông tại M có

AH chung

\(\widehat{QAH}=\widehat{MAH}\)

Do đó: ΔAQH=ΔAMH

Suy ra: HQ=HM

=>HQ=1/2MN

=>ΔMQN vuông tại Q

Xét ΔBQH vuông tạiQ và ΔBNH vuông tại N có

BH chung

HQ=HN

Do đó; ΔBQH=ΔBNH

Suy ra: BQ=BN

=>BH là đường trung trực của QN

26 tháng 3 2020

Violympic toán 7

Tính chất đường trung trực của một đoạn thẳng

b) Vì ΔAHC = ΔAHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét ΔBHN và ΔCHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> ΔBHN = ΔCHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c)Chương II : Tam giác

26 tháng 3 2020

Cảm ơn bạn nha

18 tháng 3 2018

Chương II : Tam giácChương II : Tam giác

18 tháng 3 2018

A B C H Q M N

a) Xét \(\Delta AHC,\Delta AHB\) có :

\(\widehat{ABH}=\widehat{ACH}\) (ΔABC cân tại A)

\(AB=AC\) (ΔABC cân tại A)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta AHC=\Delta AHB\) (cạnh huyền - góc nhọn)

b) Xét \(\Delta MCH,\Delta NBH\) có :

\(BH=CH\) (\(\Delta AHC=\Delta AHB\))

\(\widehat{BHN}=\widehat{CHM}\) (đối đỉnh)

\(HN=HM\left(gt\right)\)

=> \(\Delta MCH=\Delta NBH\left(c.g.c\right)\)

=> \(\widehat{HNB}=\widehat{HMC}=90^o\) (2 cạnh tương ứng)

Ta có : \(\left\{{}\begin{matrix}BN\perp MN\\AC\perp MN\end{matrix}\right.\)

=> \(BN//AC\)

c) Xét \(\Delta AQH,\Delta AMH\) có :

\(\widehat{QAH}=\widehat{MAH}\) (\(\Delta AHC=\Delta AHB\))

\(\widehat{AQH}=\widehat{AMH}\left(=90^o\right)\)

\(AH:Chung\)

=> \(\Delta AQH=\Delta AMH\) (cạnh huyền - góc nhọn)

=> QH = MH (2 cạnh tương ứng)

Xét \(\Delta BQH,\Delta BNH\) có :

\(BH:Chung\)

\(\widehat{BQH}=\widehat{BNH}\left(=90^o\right)\)

\(QH=NH\left(=MH\right)\)

=> \(\Delta BQH=\Delta BNH\left(c.g.c\right)\)

=> \(\left\{{}\begin{matrix}BN=BQ\\\widehat{NBH}=\widehat{QBH}\end{matrix}\right.\)

=> BH là đường phân giác trong tam giác cân BQN

=> BH đồng thời là đường trung trực của NQ

Mà : \(BH\equiv BC\)

=> BC là đường trung trực của NQ (đpcm)

20 tháng 2 2018

a/ Xét tam giác AHB và tam giác AHC có:

        AB = AC (vì tam giác ABC cân tại A)

       góc ABC = góc ACB (vì tam giác ABC cân tại A)

       AH: cạnh chung 

=> tam giác AHB = tam giác AHC (c.g.c)

10 tháng 2 2020

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

10 tháng 2 2020

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

14 tháng 1 2018

a ) Do \(AH\perp BC\Rightarrow\)AH là đường cao của \(\Delta ABC\) cân tại A .Hay AH cũng là đường trung tuyến của \(\Delta ABC\) cân tại A .

\(\Rightarrow BH=HC\)

Xét \(\Delta BMH\) và \(\Delta CNH\) có : \(\widehat{BMH}=\widehat{CNH}=90^0\left(gt\right);BH=HC\left(cmt\right);\widehat{B}=\widehat{C}\left(gt\right)\)

\(\Rightarrow\) \(\Delta BMH\) = \(\Delta CNH\) (CH - GN) => BM = CN

Kết hợp với AB = AC => AM = AN hay \(\Delta AMN\) Cân tại A

b)  \(\Delta AMN\) Cân tại A (cmt) \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{AMN}}{2}\)(1)

\(\Delta ABC\) Cân tại A (gt)  \(\Rightarrow\widehat{BAC}=\frac{180^0-\widehat{ABC}}{2}\)(2)

Từ (1);(2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}\) Lại ở vị trí trong cùng phía \(\Rightarrow MN\\ \)BC

c) Áp dụng định lý Pytagore và 2 tam giác vuông\(BMH\) Và \(ANH\) ta có :

\(AH^2=AN^2+HN^2\)

\(BH^2=BM^2+MH^2\Rightarrow BM^2=BH^2-MH^2\)

\(\Rightarrow AH^2+BM^2=AN^2+HN^2+BH^2-MH^2=\left(AN^2+BH^2\right)+\left(HN^2-MH^2\right)\)

\(=AN^2+BH^2\)(đpcm)

14 tháng 1 2018

Tam giác(TG) ABC cân tại A có đường cao AH => AH đồng thời là trung tuyến => BH=HC

TG ABC cân => Góc ABC = góc ACB (2goc đáy)

TG MBH = TG NCH (cạnh huyền-góc nhọn) => MB = NC (2ctu) 

mà AB = AC (vì TG ABC cân) và AM + BM = AB , AN + NC = AC 

=> AM = AN 

=> TG AMN cân

b)  AM = BM (CMT) và AN = NC (CMT) => MN là ddg TB của TG=> MN//BC

14 tháng 12 2019

Không biết có phải mình vẽ hình sai hay không chứ mình thấy đề hơi vô lí