Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a, xét \(\Delta\)BEM và \(\Delta\)CFM có:
\(\widehat{B}\)=\(\widehat{C}\)(gt)
BM=CM(trung tuyến AM)
\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)
b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)
\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)
Gọi O là giao của AM và EF
xét tam giác OAE và tam giác OAF có:
AO cạnh chung
\(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)
vì AB=AC mà EB=FC nên AE=AF
\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)
\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)
\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)
từ (1) và (2) suy ra AM là đg trung trực của EF
c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)
ta có tam giác BAM=tam giác CAM(c.g.c)
=> AD là p/g của góc BAC(2)
từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng
a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C
Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F
BM=CM (BM là trung tuyến)
Góc B=Góc C
=> Tam giác BEM=Tam giác CFM(ch-gn)
b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC
Mà AB=AC=> AE=AF(2)
Từ 1 và 2 => AM là trung trực của EF
a) Xét tam giác ABI và tam gaic ACI có:
AB = AC
IB= IC ( vì I là trg điểm BC )
AI: cạnh chung
=> tam giác ABI = tam giác ACI
b) Ta có: tam giác ABI = tam giác ACI (theo câu a) => \(\widehat{BIA}=\widehat{AIC}\)( hai góc tương ứng) hay \(\widehat{BID}=\widehat{DIC}\)
Xét tam giác BID và tam giác DIC có:
DI: cạnh chung
\(\widehat{BID}=\widehat{DIC}\) ( cmt )
IB = IC ( gt)
=> tam giác BID = tam giác CID ( c.g.c)
=> DB= DC ( 2 cạnh tương ứng)
c)
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
a.vì \(\Delta ABC\)cân tại A mà AI là đường phân phân giác của\(\widehat{A}\)=>AI đồng thời là đường cao và đường trung tuyến ứng với cạnh BC của tam giác ABC
=>\(AI\perp BC\)
b.xét tam giác ABC có
AI,CM là hai đường trung tuyến của tam giác ABC(gt)(cmt)
mà AI cắt CM tại G=>G là trọng tâm của tam giác ABC
=>BG là đường trung tuyến của tam giác ABC
c.ta có IB=IC=BC/2=18/2=9(cm)(AI là đương trung tuyến ứng với cạnh BC của tam giác ABC=>I là trung điểm của tam bc)
xét tam giácACI vuông tại I có
AC^2=AI^2=IC^2(ĐL py-ta-go)
hay 15^2=9^2+AI^2
=>AI^2=225-81=144
=>AI=12(cm)
tam giác ABC có G là trọng tâm tam giác ABC ;AI là đường trung tuyến ứng với cạnh BC của tam giác ABC
=>IG=2/3AI=2/3.12=89(cm)
a) Vì G là trọng tâm của \(\Delta ABC\) nên:
\(AF=BF=\dfrac{AB}{2}\)(CG là đường trung tuyến)
\(AE=EC=\dfrac{AC}{2}\) (BE là đường trung tuyến)
mà AB = AC (\(\Delta ABC\) cân tại A)
\(\Rightarrow\) AF = AE
\(\Rightarrow\) \(\Delta AFE\) cân tại A.
Hai tam giác cân AFE và ABC có:
\(\widehat{AFE} = \widehat{ABC}\) \(\left(=\dfrac{180^o-\widehat{BAC}}{2}\right)\)
mà hai góc này ở vị trí đồng vị
\(\Rightarrow\) EF // BC
b) \(\Delta FAM\) và \(\Delta EAM\) có:
AF = AE (cmt)
\(\widehat{FAM}=\widehat{EAM}\) (tính chất tam giác cân)
AM là cạnh chung
\(\Rightarrow\Delta FAM=\Delta EAM\left(c.g.c\right)\)
\(\Rightarrow\) \(\widehat{EMA} = \widehat{AMF}\) (hai góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{FME}\)
\(\Rightarrow\) G cách đều hai cạnh ME và MF.