\(B=n^4-27n^2+121\). Tìm số tự nhiên n để B là số nguyên tố.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

26 tháng 10 2020

\(B=n^4-27n^2+121\)

\(B=n^4+22n^2+121-49n^2\)

\(B=\left(n^2+11\right)^2-49n^2\)

\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)

Vì n là số tự nhiên => \(n^2+11+7n>11\)

Để B là số nguyên tố

=> \(n^2-7n+11=1\)

\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)

26 tháng 3 2024

what

22 tháng 10 2016

\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)

\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)

\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)

Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.

\(\Rightarrow n-3=1\)

\(\Rightarrow n=4\)

Thử lại : \(B=103\left(TM\right)\)

 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
17 tháng 7 2018

a)   \(A=12n^2-5n-25\)

\(=12n^2+15n-20n-25\)

\(=3n\left(4n+5\right)-5\left(4n+5\right)\)

\(=\left(3n-5\right)\left(4n+5\right)\)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó

nên  A là số nguyên tố thì:   \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)

do n là số tự nhiên nên \(n=2\)

thử lại:  n=2  thì  A = 13 là số nguyên tố

Vậy n = 2

17 tháng 7 2018

b)  \(B=8n^2+10n+3\)

\(=8n+6n+4n+3\)

\(=2n\left(4n+3\right)+\left(4n+3\right)\)

\(=\left(2n+1\right)\left(4n+3\right)\)

Để B là số nguyên tố thì:   \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)

Do n là số tự nhiên nên  n = 0

Thử lại: \(n=0\)thì    \(B=3\)là số nguyên tố

Vậy  \(n=0\)

16 tháng 6 2018

\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)

Ta có C là số nguyên tố nên C có ước là 1

TH1: n-1=1  => n=2 => C=5 (là số nguyên tố)

TH2: n2+1= 1 => n=0  => C= -1 (không là số nguyên tố)

Vậy với n=2 thì C là số nguyên tố

16 tháng 6 2018

Có C = \(\left(n-1\right)\left(n^2+1\right)\)

Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1

TH1: n-1=1=>n=2 => C = 5 ( chọn )

TH2: n^2+1=1 => n=0 => C = -1 (loại)

Vậy n=2