Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=n^4-27n^2+121\)
\(B=n^4+22n^2+121-49n^2\)
\(B=\left(n^2+11\right)^2-49n^2\)
\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)
Vì n là số tự nhiên => \(n^2+11+7n>11\)
Để B là số nguyên tố
=> \(n^2-7n+11=1\)
\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
a) \(A=12n^2-5n-25\)
\(=12n^2+15n-20n-25\)
\(=3n\left(4n+5\right)-5\left(4n+5\right)\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó
nên A là số nguyên tố thì: \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)
do n là số tự nhiên nên \(n=2\)
thử lại: n=2 thì A = 13 là số nguyên tố
Vậy n = 2
b) \(B=8n^2+10n+3\)
\(=8n+6n+4n+3\)
\(=2n\left(4n+3\right)+\left(4n+3\right)\)
\(=\left(2n+1\right)\left(4n+3\right)\)
Để B là số nguyên tố thì: \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)
Do n là số tự nhiên nên n = 0
Thử lại: \(n=0\)thì \(B=3\)là số nguyên tố
Vậy \(n=0\)
\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)
Ta có C là số nguyên tố nên C có ước là 1
TH1: n-1=1 => n=2 => C=5 (là số nguyên tố)
TH2: n2+1= 1 => n=0 => C= -1 (không là số nguyên tố)
Vậy với n=2 thì C là số nguyên tố
Có C = \(\left(n-1\right)\left(n^2+1\right)\)
Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1
TH1: n-1=1=>n=2 => C = 5 ( chọn )
TH2: n^2+1=1 => n=0 => C = -1 (loại)
Vậy n=2
Có \(B=n^4-27n^2+121\)
\(=n^4+22n^2+121-49n^2\)
\(=\left(n^2+11\right)^2-\left(7n\right)^2\)
\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)
Vì \(n\in N\)nên \(n^2+7n+11>11\)
Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)
Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)
Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)
Vậy nên \(n^2-7n+11=1\)
\(\Leftrightarrow n^2-7n+10=0\)
\(\Leftrightarrow n^2-2n-5n+10=0\)
\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)
Vậy.............