K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2019

\(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{1}{2}\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}}=\frac{\sqrt{2}-1}{2}\)

\(\Leftrightarrow2x+1=\sqrt{2}\)

\(\Leftrightarrow4x^2+4x-1=0\)
Giờ thế vô A đi

10 tháng 7 2021

bạn ơi cho hỏi sao chỗ kia từ dòng số 2 sao xuống dòng số 3 được vậy 

 

8 tháng 10 2016

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

6 tháng 10 2016

no biet

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

11 tháng 12 2018

Bạn ghi lộn đề rồi \(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}\) chứ không phải \(\left(\dfrac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\right)^{2014}\)

11 tháng 12 2018

Ta có \(x=\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}=\dfrac{1}{2}\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2-1}\right)}}=\dfrac{1}{2}\sqrt{\left(\sqrt{2}-1\right)^2}=\dfrac{\left|\sqrt{2}-1\right|}{2}=\dfrac{\sqrt{2}-1}{2}\)

Vậy ta có \(x=\dfrac{\sqrt{2}-1}{2}\Leftrightarrow2x=\sqrt{2}-1\Leftrightarrow2x+1=\sqrt{2}\Leftrightarrow\left(2x+1\right)^2=2\Leftrightarrow4x^2+4x+1=2\Leftrightarrow4x^2+4x-1=0\)Ta lại có \(\left(4x^5+4x^4-x^3+1\right)^{19}=\left[x^3\left(4x^2+4x-1\right)+1\right]^{19}=\left(x^3.0+1\right)^{19}=1^{19}=1\)(1)

\(\left(\sqrt{4x^5+4x^4-5x^3+5x+3}\right)^3=\left(\sqrt{4x^5+4x^4-x^3-4x^3-4x^2+x+4x^2+4x-1+4}\right)^3=\left(\sqrt{x^3\left(4x^2+4x-1\right)-x^2\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\right)^3=\left(\sqrt{x^3.0+x^2.0+0+4}\right)^3=\left(\sqrt{4}\right)^3=2^3=8\left(2\right)\)

\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2014}=\left[\dfrac{1-\sqrt{2}.\dfrac{\sqrt{2}-1}{\sqrt{2}}}{\sqrt{2.\dfrac{3-2\sqrt{2}}{4}+\sqrt{2}-1}}\right]^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}}{2}+\sqrt{2}-1}}\right)^{2014}=\left(\dfrac{\dfrac{1}{\sqrt{2}}}{\sqrt{\dfrac{3-2\sqrt{2}+2\sqrt{2}-2}{2}}}\right)^{2014}=\left(\dfrac{\dfrac{\dfrac{1}{\sqrt{2}}}{1}}{\sqrt{2}}\right)^{2014}=1^{2014}=1\left(3\right)\)

Cộng (1),(2),(3) theo vế ta được A=1+8+1=10

Vậy khi x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\) thì A=10