K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,B=\frac{10\sqrt{x}+12+\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x+6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)

\(b,C=\frac{x-1}{\sqrt{x}-3}:\frac{\sqrt{x}+3}{\sqrt{x}-3}=\frac{x-1}{\sqrt{x}+3}\)

\(\hept{\begin{cases}x\ge0\\\sqrt{x}+3>0\end{cases}\Rightarrow}x-1\ge-1\)

\(\Rightarrow C_{min}=-1\Leftrightarrow x=0\)

Vậy................

7 tháng 3 2020

Với x = 0 thì C = -1/3 chứ có phải là  -1 đâu .

b) 

Ta có: \(C=\frac{x-1}{\sqrt{x}+3}=\sqrt{x}-3+\frac{8}{\sqrt{x}+3}=\left(\sqrt{x}+3+\frac{9}{\sqrt{x}+3}\right)-6-\frac{1}{\sqrt{x}+3}\)

\(\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{9}{\sqrt{x}+3}}-6-\frac{1}{3}=-\frac{1}{3}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{x}+3=\frac{9}{\sqrt{x}+3}\\x=0\end{cases}}\Leftrightarrow x=0\)

Vậy min C = -1/3 tại  x =0

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

20 tháng 5 2018

a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)

b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)

\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3 \)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)