Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{12n+1}{2n+3}=\frac{6.\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
để \(A\in Zthi\frac{17}{2n+3}\in Z\)
và \(17⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(17\right)=1;17;-1;-17\)
\(\Rightarrow n\in\left(-1;7;-2;-10\right)\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi
a)để A là 1 ps (n\(\in\)Z;n\(\ne\)5;1;9;-3;13;-7;33;-27)
b)\(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-15}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{15}{2n+3}\in Z\)
=>15 chia hết 2n+3
=>2n+3\(\in\){1,-1,3,-3,5,-5,15,-15}
=>n\(\in\){5;1;9;-3;13;-7;33;-27}
Cho \(A=\frac{12n+5}{2n+3}=\frac{6\left(2n+3\right)-13}{2n+3}=\frac{6\left(2n+3\right)}{2n+3}-\frac{13}{2n+3}\in Z\)
Để \(A\in Z\Rightarrow13⋮\left(2n+3\right)\)hay \(2n+3\inƯ\left(13\right)\)
Ta có :
\(Ư\left(13\right)\in\left\{\pm1;\pm13\right\}\Rightarrow2n+3\in\left\{\pm1;\pm13\right\}\)
\(2n+3\) | \(n\) |
\(1\) | \(-1\) |
\(-1\) | \(-2\) |
\(13\) | \(5\) |
\(-13\) | \(-8\) |
Vậy để A nguyên \(\Rightarrow n\in\left\{-1;-2;5;-8\right\}\)
b) Để A là số nguyên => 12n+1\(⋮\)2n+3
Do 2n+3\(⋮\)2n+3 => 12n+18\(⋮\)2n+3
=> 12n+18-(12n+1)\(⋮\)2n+3
hay 17\(⋮\)2n+3
=>2n+3\(\in\){1;17;-1;-17}
Vậy n\(\in\){-1;7;-2;-10}
\(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
\(=\frac{2n+1+3n-5-4n+5}{n-3}\)
\(=\frac{n+1}{n-3}\)
a) Để A là phân số thì \(n-3\ne0\)
\(\Leftrightarrow n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
Ta có n+1=n-3+4
=> 4 \(⋮\)n-3
=> n-3\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng
n-3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
Đặt \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+3n-5-4n-5}{n-3}=\frac{n-9}{n-3}\)
a) Để A là một phân số thì \(n-3\ne0\)=> \(n\ne3\)
b) Ta có : \(A=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{n-9}{n-3}=\frac{n-3-6}{n-3}=1-\frac{6}{n-3}\)
A có giá trị nguyên <=> \(n-3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
Có mấy chục câu dạng này rồi mà bạn cứ hỏi. Để A là số nguyên thì tử phải chia hết cho mẫu...tách tử ra rồi làm ra kết quả.
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
a) Để A là p/số thì 2n+3 khác 0
=>2n+3=0
2n=3+0
n=3/2
=>n khác 3/2
b)\(\frac{12n+1}{2n+3}=\frac{12n+18-17}{2n+3}=6-\frac{17}{2n+3}\)
\(\Rightarrow2n+3\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow2n\in\left\{-20;-4;-2;14\right\}\)
\(\Rightarrow n\in\left\{-10;-2;-1;7\right\}\)
mik chỉ làm câu b thôi câu a dễ thì tự làm nhé
để A là số nguyên khi 12n+1 chia hết cho 2n+3
=>2n+3 thuộc Ư(12n+1)
có 12n+1 = 12n +18-15
=>(12n+18)-15 chia hét cho 2n+3
có 12n+18chia hết cho 2n+3
=> -15 chia hết cho 2n+3
có Ư(-15)=(+1;+3;+5;+15)