\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}\)
Chứng minh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Ta có : \(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+......+\frac{1}{2^{100}}\)

\(\Rightarrow4A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^4}+.....+\frac{1}{2^{98}}\)

\(\Rightarrow4A-A=\frac{1}{2}-\frac{1}{2^{100}}\)

\(\Rightarrow3A=\frac{2^{99}-1}{2^{100}}\)

\(\Rightarrow A=\frac{2^{99}-1}{\frac{2^{200}}{3}}\)

Vì : \(\frac{2^{99}-1}{2^{200}}< 1\)

Nên : \(A< \frac{1}{3}\)

26 tháng 8 2017

\(M.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)

3 tháng 4 2018

Đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)

Ta có : 

\(A>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}>\frac{1}{5}-\frac{1}{30}=\frac{1}{6}\)

\(\Rightarrow\)\(A>\frac{1}{6}\) \(\left(1\right)\)

Lại có : 

\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)

\(\Rightarrow\)\(A< \frac{1}{4}\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(\frac{1}{6}< A< \frac{1}{4}\) ( đpcm ) 

Vậy \(\frac{1}{6}< A< \frac{1}{4}\)

Chúc bạn học tốt ~ 

5 tháng 11 2018

Ta thấy : \(\frac{1}{2^2}< \frac{1}{3}\)

             \(\frac{1}{2^4}< \frac{1}{3}\)

                 ...

              \(\frac{1}{2^{100}}< \frac{1}{3}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{100}}< \frac{1}{3}\)

Vậy \(A< \frac{1}{3}\)

Chúc bạn học tốt :>

5 tháng 11 2018

A.\(4\)=\(1+\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{98}}\)

=> 4A-A=1-\(\frac{1}{2^{100}}\)

=> A=\(\frac{1}{3}\left(1-\frac{1}{2^{100}}\right)=\frac{1}{3}-\frac{1}{3}.\frac{1}{2^{100}}< \frac{1}{3}\)

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

k đi rồi mk trả lời cho

ko tin người -_-

30 tháng 10 2020

VIẾT SAI ĐỀ BÀI NHÉ

50<A<100

5 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

=> \(A< 2\left(đpcm\right)\)

6 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{50}\right)< \frac{1}{4}.2=2\)

\(A< 2\left(đpcm\right)\)