Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức k/n*m=k/n-k/m trong đó n-m=k hoặc m-n=k
thế vào ta có
A=1/2*3+1/4*5+...+1/98*99
tớ biết tới đó thôi để từ từ tớ suy nghĩ rồi trả lời cho
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
Bạn xem lời giải của mình nhé:
Giải:
A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)
\(A< 1\)(2)
Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(=>A=1-\frac{1}{2^{100}}\)
Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)
\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)
\(=>0< A< 1\)
Chúc bạn học tốt!
Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)
2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)
2A=1+1/2+1/2^2+...+1/2^99
2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)
A=1-1/2^100<1
Vậy A<1
Cậu tự KL nhé
Ta có: \(\frac{1}{1^2}=\frac{1}{1\cdot1};\frac{1}{2^2}<\frac{1}{1\cdot2};...;\frac{1}{50^2}<\frac{1}{49\cdot50}\)
=>\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}<1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}=1+1-\frac{1}{50}=2-\frac{1}{50}=1,98\)
hay A<1,98 mà 1,98<2 nên A<2
Vậy A<2