Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
\(A=\dfrac{10}{a^m}+\dfrac{10}{a^n}=\dfrac{10a^n+10a^m}{a^{m+n}}\)
\(B=\dfrac{11}{a^m}+\dfrac{9}{a^n}=\dfrac{11a^n+9a^m}{a^{m+n}}\)
Cần so sánh: \(10a^m+10a^n\) và \(9a^m+11a^n\)
Mà \(10a^m+10a^n-9a^m-11a^n\)
\(=a^m-a^n\)
Vậy m < n thì A > B, m < n thì A < B
*Trả lời :
a) \(-\dfrac{3}{4}.5\dfrac{3}{13}-0,75.\dfrac{36}{13}\)
= \(-\dfrac{3}{4}.\dfrac{68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\dfrac{-68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\cdot\left(\dfrac{-68}{13}-\dfrac{36}{13}\right)\)
=\(\dfrac{3}{4}.\left(-8\right)\)
= \(-6\)
b)\(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{41}{9}-\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)
=\(10:\left(-\dfrac{5}{7}\right)\)
=\(-14\)
c)\(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)
=\(\left(-\dfrac{3}{5}\right)+\dfrac{4}{9}:\dfrac{7}{11}+\left(-\dfrac{2}{5}\right)+\dfrac{5}{9}:\dfrac{7}{11}\)(áp dụng tính chất phá ngoặc )
=\(\left\{\left[-\dfrac{3}{5}+\left(-\dfrac{2}{5}\right)\right]+\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\right\}:\dfrac{7}{11}\)
=\(\left(-\dfrac{5}{5}+\dfrac{9}{9}\right):\dfrac{7}{11}\)
=\(\left(-1+1\right):\dfrac{7}{11}\)
\(=0:\dfrac{7}{11}\)
=0.
d)\(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}:\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)
=\(\dfrac{6}{7}:\left[\dfrac{3}{26}+\left(-\dfrac{6}{26}\right)\right]+\dfrac{6}{7}:\left[\dfrac{1}{10}+\left(-\dfrac{16}{10}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{3}{26}\right)+\dfrac{6}{7}:\left(-\dfrac{3}{2}\right)\)
=\(\dfrac{6}{7}:\left[\left(-\dfrac{3}{26}\right)+\left(-\dfrac{39}{26}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{21}{13}\right)\)
=\(-\dfrac{26}{49}\)
1)
a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)
\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)
b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)
\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)
c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)
\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)
e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)
\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)