K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ac=0(*)\).

Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$

\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$

\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$

Do đó:

\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)

\(\Leftrightarrow (c+a)(c+b)=c^2\)

\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)

\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)

\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)

\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)

\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)

25 tháng 7 2019

dạ e cảm ơn ak

4 tháng 7 2016

Khó nhỉ

5 tháng 7 2016

khó thì mình mới nhờ các bạn chứ

8 tháng 8 2020

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Leftrightarrow2c+2\sqrt{ab+bc+ca+c^2}=0\)

Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)

Khi đó \(c=0?\)

Nhầm chỗ nào nhắc mình với nha mình cảm ơn nhiều

9 tháng 8 2020

mình vẫn không phát hiện bạn nhầm chỗ nào

17 tháng 6 2019

Ta có:\(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a\left(a+b\right)+c\left(a+b\right)}}\)

\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) (Áp dụng BĐT AM-GM)

Tương tự với hai BĐT còn lại và cộng theo vế ta thu được đpcm.

22 tháng 7 2019

3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có

\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)

TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)

=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)

Dấu bằng xảy ra khi a=b=c

22 tháng 7 2019

cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không

24 tháng 4 2020

Bài 1 : 

Bât đẳng thức cần chứng minh tương đương với :

( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz 

Áp dụng bất đẳng thức Côsi ta có : 

xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\)           ( 1) 

Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)

hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\)                (2) 

Do các vế đều dương ,từ (1) và (2) suy ra :

( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)

Dấu đẳng thức xảy ra khi và chỉ khi x = y  =z = 1 

Bài 2: 

\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)

Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)