Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}=16\Rightarrow16-4b-4c=4a+4\sqrt{abc}\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=2a+\sqrt{abc}\)
Tương tự : \(\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\); \(\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Ta có: \(a+b+c+\sqrt{abc}=4\)
\(\Rightarrow4a+4b+4c+4\sqrt{abc}=16\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\)
\(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(16-4b-4c+bc\right)}=\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\)
\(=\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}=\left|2a+\sqrt{abc}\right|=2a+\sqrt{abc}\)
Tương tự:
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{b\left(4-a\right)\left(4-c\right)}=2b+\sqrt{abc}\\\sqrt{c\left(4-a\right)\left(4-b\right)}=2c+\sqrt{abc}\end{matrix}\right.\)
\(\Rightarrow A=\sqrt{a\left(4-b\right)\left(4-c\right)}+\sqrt{b\left(4-c\right)\left(4-a\right)}+\sqrt{c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}=2a+2b+2c+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c+\sqrt{abc}\right)=8\)
Ta có \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a\left(a+c+\sqrt{abc}\right)\left(4-c\right)}\)
\(=\sqrt{\left(a^2+ac+a\sqrt{abc}\right)\left(4-c\right)}\\ =\sqrt{4a^2+ac\left(4-\sqrt{abc}-a-c\right)+4a\sqrt{abc}}\\ =\sqrt{4a^2+4a\sqrt{abc}+abc}=\sqrt{\left(2a+\sqrt{abc}\right)^2}\\ =2a+\sqrt{abc}\left(a,b,c>0\right)\)
Cmtt \(\sqrt{b\left(4-c\right)\left(4-a\right)}=2b+\sqrt{abc};\sqrt{c\left(4-b\right)\left(4-a\right)}=2c+\sqrt{abc}\)
\(\Rightarrow A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}=2\left(a+b+c\right)+2\sqrt{abc}\\ A=2\left(a+b+c+\sqrt{abc}\right)=2\cdot4=8\)
Nguyễn Bùi Đại Hiệp phục bạn này lần nào hỏi cũng chép sai đề.
\(a+b+c+\sqrt{abc}=4\)
\(\Leftrightarrow4\left(a+b+c\right)+4\sqrt{abc}=16\)(*)
\(A=\Sigma\left(\sqrt{a\left(4-b\right)\left(4-c\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\left(\sqrt{a\left(16-4b-4c+bc\right)}\right)-\sqrt{abc}\)
Thay (*) vào A ta được :
\(A=\Sigma\left(\sqrt{a\left(4a+4b+4c+4\sqrt{abc}-4b-4c+bc\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\left(\sqrt{a\left(4a+4\sqrt{abc}+bc\right)}\right)-\sqrt{abc}\)
\(A=\Sigma\sqrt{a\left(2\sqrt{a}+\sqrt{bc}\right)^2}-\sqrt{abc}\)
\(A=\Sigma\left[\sqrt{a}\cdot\left(2\sqrt{a}+\sqrt{bc}\right)\right]-\sqrt{abc}\)
\(A=\Sigma\left(2a+\sqrt{abc}\right)-\sqrt{abc}\)
\(A=2\left(a+b+c\right)+3\sqrt{abc}-\sqrt{abc}\)
\(A=2\left(a+b+c\right)+2\sqrt{abc}\)
\(A=2\left(a+b+c+\sqrt{abc}\right)\)
\(A=2\cdot4=8\)
Vậy....
Ta có:
\(a+b+c+\sqrt{abc}=4\)
\(\Leftrightarrow4a+4b+4c+4\sqrt{abc}=16\)
Ta lại có:
a(4 - b)(4 - c) = a(16 - 4b - 4c + bc) = a(4a + bc + \(4\sqrt{abc}\))
= (4a2 + \(4a\sqrt{abc}\)+ abc)
= (\(2a+\sqrt{abc}\))2
Tương tự ta có
b(4 - c)(4 - a) = (\(2b+\sqrt{abc}\))2
c(4 - a)(4 - b) = (\(2c+\sqrt{abc}\))2
Từ đây ta có
\(A= 2a+2b+2c+3\sqrt{abc}-\sqrt{abc}\)
\(=8\)
Nhầm
\(a+b+c-\sqrt{abc}=4\)
Thành
\(a+b+c+\sqrt{abc}=4\)
Mà thôi cũng làm tương tự thôi nên bạn tự làm lại nhé
Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)
\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)
Với x,y dương ta có 2 bất đẳng thức phụ sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)
Áp dụng (*) và (**), ta có:
\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)
\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)
Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)
\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)
Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:
\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))
Đẳng thức xảy ra khi \(a=b=c\)
\(B=2\Sigma_{sym}\sqrt{ab}+3\left(a+b+c+d\right)\le6\left(a+b+c+d\right)\le6\)
Câu 3:
bạn cứ áp dụng cái \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Câu 4:
từ giả thiết :\(a+b+c+\sqrt{abc}=4\Leftrightarrow\sqrt{abc}=4-a-b-c\Leftrightarrow abc=\left(4-a-b-c\right)^2\)
ta có: \(a\left(4-b\right)\left(4-c\right)=a\left(16-4c-4b+bc\right)=16a-4ac-4ab+abc\)
\(=16a-4ab-4ac+\left[4-\left(a+b+c\right)\right]^2=16a-4ab-4ac+16-8\left(a+b+c\right)+\left(a+b+c\right)^2\)
\(=a^2+b^2+c^2-2ab-2ac+2bc+8a-8b-8c+16\)
\(=\left(a-b-c\right)^2+8\left(a-b-c\right)+16=\left(a-b-c+4\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=a-b-c+4\)(vì \(a-b-c+4=a-b-c+a+b+c+\sqrt{abc}=2a+\sqrt{abc}>0\))
các căn thức còn lại tương tự ...
ta có \(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4a+4\sqrt{abc}\)
=> \(4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
=> \(\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
=> \(\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
tương tự như thế thay vào , thì A=8
Ta có:
\(a+b+c+\sqrt{abc}=4\Rightarrow4a+4b+4c+4\sqrt{abc}\)
\(\Rightarrow4a+4\sqrt{abc}=16-4b-4c\Leftrightarrow4a+4\sqrt{abc}+bc=16-4b-4c+bc\)
\(\Rightarrow\left(2\sqrt{a}+\sqrt{bc}\right)^2=\left(4-b\right)\left(4-c\right)\Rightarrow a\left(4-b\right)\left(4-c\right)=a\left(2\sqrt{a}+\sqrt{bc}\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=\sqrt{a}\left(2\sqrt{a}+\sqrt{bc}\right)=2a+\sqrt{abc}\)
Tương tự như thế thay vào, thì A = 8