Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
abcdeg=1000abc+deg
=(abc+deg)+999abc chia hết cho 37
các câu còn lại tương tự
Ta có
333 chia hết cho 37
=> 333555 chia hết cho 37
Chứng minh tương tự
=> 555333 chia hết cho 37
Vậy 333555 + 555333 chia hết cho 37
Ta có :
Nếu \(\overline{abc}\)chia hết cho 37 thì 100a + 10b + c chia hết cho 37
→ 1000a + 100b + 10c chia hết cho 37
→ 1000a - 999a + 100b + 10c chia hết cho 7
→ 100b + 10c + a chia hết cho 7 ( bca chia hết cho 7 )
Nếu \(\overline{bca}\)chia hết cho 7 thì ............
Bạn làm tương tự như trên nhé
abc chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = bca chia hết cho 37
abc chia hết cho 37
=> abc0 chia hết cho 37
=> 1000a + bc0 chia hết cho 37
=> 999a + a + bc0 chia hết cho 37
=> 27.37a + bca chia hết cho 37
Do 27.37a chia hết cho 37 nên bca chia hết cho 37
\(abcdeg=1000abc+deg=2000deg+deg=2001deg\)
Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết ccho 23,29
Mà ƯCLN (23,29) = 1
=> 2001deg chia hết cho 23.29 = 667
Vậy: đpcm
\(\overline{abcd}=100\overline{ab}+\overline{cd}=200\overline{cd}+\overline{cd}=201\overline{cd}=3.67.\overline{cd}⋮67\)
Câu 2 bạn ghi sai đề rồi nhé.
Ví dụ \(135⋮27\)nhưng \(315⋮̸27\).
Sửa: Cho số \(\overline{abc}\)chia hét cho \(27\). Chứng minh rằng \(\overline{cab}\)cũng chia hết cho \(27\).
Ta có: \(\overline{abc}=100a+10b+c⋮7\Leftrightarrow10000a+1000b+100c⋮27\)
\(\Leftrightarrow10000-370.27a+1000b-37.27b+100c⋮27\)
\(\Leftrightarrow100c+10a+b=\overline{cab}⋮27\).
Ta có : A = abcdeg - (abc+deg)
= abc.1000 + deg - abc - deg
= abc.999
= abc.27.37
=> A chia hết cho 37
Vì abc + deg chia hết cho 37 mà A chia hết cho 37 nên abcdeg chia hết cho 37
\(\overline{abc}+\overline{deg}⋮37\)
\(\overline{abcdeg}=1000\cdot\overline{abc}+deg\)
\(\Rightarrow999\cdot\overline{abc}+\overline{abc}+\overline{deg}\)
\(\Rightarrow\left(\overline{abc}\cdot27\cdot37\right)+\overline{abc}+\overline{deg}\)
Do \(\overline{abc\cdot37\cdot27⋮37}\)nên \(\overline{abcdeg}⋮37\)