Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
(a+b+c)2=a2+b2+c2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=> bc=-ab-ac
=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)
Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)
\(\frac{c^2}{c^2+2ab}=...\)
=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...
=\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
=1
Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{c\left(a+b\right)\left(a+b+c\right)}{abc\left(a+b+c\right)}+\frac{ab\left(a+b\right)}{abc\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(ab+ac+bc+c^2\right)}{abc\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Để \(\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)thì:
a+b=0 hoặc b+c=0 hoặc a+c=0
\(\Rightarrow\)2 trong 3 số đó phải đối nhau