Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )
bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé
đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)
áp dụng định lí six paths of Pain :) ta có
\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì
thay vào ta được :)
\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
áp dụng cô si sáp cho 2 số ta có
\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng
\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng
\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng
cộng các vế lại ta được và rút 2/2 ta được :))
\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hình như BDT đã được chứng minh :))
theo bài của bạn Phạm quốc cường ta có :))
\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))
tức là \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))
tức là định Lí six paths of Pain luôn đúng :))
dấu = xảy ra khi nào thì mình éo biết được :))
: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{ab}{2\sqrt{ab}}+\frac{bc}{2\sqrt{bc}}+\frac{ca}{2\sqrt{ca}}\) (bất đẳng thức cô-si)
\(=\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ca}}{2}\)
\(=\frac{1}{4}\left(2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\right)\)
\(\le\frac{1}{4}\left(a+b+b+c+c+a\right)\)(bất đẳng thức cô si)
\(=\frac{1}{2}\left(a+b+c\right)\)
Dấu '=' xảy ra khi a=b=c
1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)
Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm
Ta có:
Từ \(\left(a+b\right)^2\ge4ab\) (bất đẳng thức Cô-si cho hai số thực dương \(a,b\))
nên nhân \(\frac{1}{4\left(a+b\right)}\) vào cả hai vế của bđt trên, ta được:
\(\frac{a+b}{4}\ge\frac{ab}{a+b}\) \(\left(1\right)\)
Tương tự, ta cũng có \(\frac{b+c}{4}\ge\frac{bc}{b+c}\) \(\left(2\right)\) và \(\frac{c+a}{4}\ge\frac{ca}{c+a}\) \(\left(3\right)\)
Cộng từng vế của bđt \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
\(\Leftrightarrow\) \(\frac{2\left(a+b+c\right)}{4}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2}\ge\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\), tức \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\) \(\left(đpcm\right)\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\)
chịu??? tớ chưa học đến?
Ê,
Why?
bạn ý cũng đưa câu hỏi lên thui mà