K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

Thay \(ab+bc+ca=1\) ta có:

\(1+a^2=ab+bc+ca+a^2=b\left(c+a\right)+a\left(c+a\right)=\left(c+a\right)\left(a+b\right)\)

Tương tự: \(1+b^2=\left(b+c\right)\left(a+b\right);\) \(1+c^2=\left(c+a\right)\left(b+c\right)\)

\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

\(\Rightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}=1\). Vậy biểu thức đó rút gọn lại bằng 1.

13 tháng 1 2017

\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)

Tương tự:

\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)

\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)

\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)

\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)

13 tháng 1 2017

cảm ơn b nha ^^

4 tháng 9 2018

\(A=\left(ab+bc+ca\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc.\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right).\)

\(A=\frac{1}{b}+\frac{1}{a}+\frac{ab}{c}+\frac{bc}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}+\frac{ca}{b}+\frac{1}{a}-\frac{bc}{a}-\frac{ac}{b}-\frac{ab}{c}\)

\(A=2\cdot\frac{1}{b}+2\cdot\frac{1}{a}+2\cdot\frac{1}{c}\)

\(A=2.\left(\frac{1}{b}+\frac{1}{a}+\frac{1}{c}\right)\)

4 tháng 9 2018

Đặt;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=m\Rightarrow mabc=ab+bc+ca\)

\(\Rightarrow m^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Rightarrow m^2-2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Thay vào A=\(mabc.m-abc.\left(m^2-2\left(\frac{a+b+c}{abc}\right)\right)=m^2abc-abcm^2+2\left(a+b+c\right)\)

\(=2a+2b+2c\)

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi 

16 tháng 8 2016

a) \(P=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-c\right)\left(b-a\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

Đặt \(x=\frac{b}{c-a},y=\frac{c}{a-b},z=\frac{a}{b-c}\) , suy ra : \(P=-xy-yz-xz\)

Lại có : \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Rightarrow xy+yz+xz=-1\Rightarrow P=1\)

 

16 tháng 8 2016

\(Q=\frac{\left[\left(x+\frac{1}{x}\right)^2\right]^3-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)

\(=3x+\frac{3}{x}=3\left(x+\frac{1}{x}\right)\)

19 tháng 4 2018

I don't no

Tui lớp 6

Ko lớp 8 , kém xa lớp 8

Chờ 2 năm nữa

19 tháng 4 2018

bạn khai triển hằng đẳng thức rồi thay số vào

sau đó đơn giản là xong

19 tháng 7 2016

a) Ta có : \(a^2+1=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự : \(b^2+1=\left(b+a\right)\left(b+c\right)\) ; \(c^2+1=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)

Vậy \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)

b) Ta có ; \(a^2+2bc-1=a^2+2bc-\left(ab+bc+ac\right)=a^2-ab+bc-ac=a\left(a-b\right)-c\left(a-b\right)\)

\(=\left(a-b\right)\left(a-c\right)\)

Tương tự : \(b^2+2ac-1=\left(a-b\right)\left(c-b\right)\) ; \(c^2+2ab-1=\left(a-c\right)\left(b-c\right)\)

Suy ra \(\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ab-1\right)=\left(a-b\right)^2.\left(c-a\right)^2.\left[-\left(b-c\right)^2\right]\)

Vậy : \(B=\frac{-\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)}=-1\)