Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
#)Giải :
Ta có : (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
= a3 + ab2 + ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + a2c + cb2 + c3 - abc - bc2 - c2a
Loại bỏ các hạng tử đồng dạng, ta được :
= a3 + b3 + c3 - 3abc
=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) => đpcm
Giải:
Áp dụng BĐT trong tam giác ta có:
\(\left\{{}\begin{matrix}a+b>c\Rightarrow ac+bc>c^2\left(1\right)\\b+c>a\Rightarrow ab+ac>a^2\left(2\right)\\c+a>b\Rightarrow bc+ab>b^2\left(3\right)\end{matrix}\right.\)
Cộng \(\left(1\right);\left(2\right);\left(3\right)\) theo vế ta có:
\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
Hay \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (Đpcm)
Nếu ab là ab thì mk giải thế này:
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10c+a}{c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}\)
\(=\frac{\left(10a+a\right)+\left(10b+b\right)+ \left(10c+c\right)}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{11a+11b+11c}{2a+2b+2c}=\frac{11\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{11}{2}\)
do đó: \(\frac{10a+b}{a+b}=\frac{11}{2}\Rightarrow\left(10a+b\right).2=11.\left(a+b\right)\Rightarrow20a+2b=11a+11b\)
\(\Rightarrow20a-11a=11b-2b\Rightarrow9a=9b\Rightarrow a=b\)
Tương tự với b=c;c=a
=>\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0^3+0^3+0^3=0\)
a; b; c là 3 cạnh của tam giác => |a - c| < b ; |a - b| < c ; |b - c| < a
=> (|a - c|)2 < b2 => a2 - 2ac + c2 < b2 (1)
(|a - b|)2 < c2 => a2 - 2ab + b2 < c2 (2)
(|b - c|)2 < a2 => b2 - 2bc + c2 < a2 (3)
Cộng từng vế của (1)(2)(3) ta được: 2(a2 + b2 + c2) - 2(ab + bc + ca) < a2 + b2 + c2
=> a2 + b2 + c2 < ab + bc + ca (đpcm)