K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

bạn c/m: a5+b5+c5+d5 chia hết cho 30 lấy: \(a^5+b^5+c^5+d^5-a-b-c-d=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+....+d\left(d-1\right)\left(d+1\right)\left(d^2+1\right)⋮30\Rightarrow dpcm\)

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

19 tháng 11 2016

câu 2

Ta có:                                                                                                                                                                                     P(0)=d =>d chia hết cho 5  (1)                                                                                                                                                P(1)=a+b+c+d =>a+b+c chia hết cho 5  (2)                                                                                                                               P(-1)=-a+b-c+d chia hết cho 5                                                                                                                                              Cộng (1) với (2) ta có: 2b+2d chia hết cho 5                                                                                                                               Mà d chia hết cho 5 =>2d chia hết cho 5                                                                                                                                  =>2b chia hết cho 5 =>b chia hết cho 5                                                                                                                          P(2)=8a+4b+2c+d chia hết cho 5                                                                                                                                       =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5)                                                                                                                      =>6a+2a+2c chia hết cho 5                                                                                                                                         =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5)                                                          =>6a chia hết cho 5                                                                                                                                                                =>a chia hết cho 5 =>c chia hết cho 5                                                                                                                                                                  Vậy a,b,c chia hết cho 5  cho mình 1tk nhé

19 tháng 11 2016

1b)

Đặt 2014+n2=m2(m∈Z∈Z,m>n)

<=>m2-n2=2014<=>(m+n)(m-n)=2014

Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ 

Suy ra m+n và m-n đều chẵn,m+n>m-n

Mà 2014=2.19.53=>m+n và m-n không cùng chẵn

=>không có giá trị nào thoả mãn

tk mình nhé

6 tháng 3 2019

Áp dụng BĐT Svarxơ:

\(\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{\left(a+b+c\right)^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(a+b\right)}}\)\(\frac{3^2}{\sqrt{5-2\left(b+c\right)}+\sqrt{5-2\left(a+c\right)}+\sqrt{5-2\left(b+c\right)}}\)

Có: \(\sqrt{5-2\left(b+c\right)}=\sqrt{2\left(1-\left(3-a\right)\right)+3}\)\(=\sqrt{-4+2a+3}=\sqrt{2a-1}\)

CMTT: \(\sqrt{5-2\left(a+c\right)}=\sqrt{2b-1}\);\(\sqrt{5-2\left(a+b\right)}=\sqrt{2c-1}\)

\(\Rightarrow\Sigma\frac{a^2}{\sqrt{5-2\left(b+c\right)}}\ge\frac{9}{\sqrt{2a-1}+\sqrt{2b-1}+\sqrt{2c-1}}\)\(\ge\frac{9}{\sqrt{\left(1^2+1^2+1^2\right)\left(2a-1+2b-1+2c-1\right)}}\)(BDT Bunhiacopxki)\(=\frac{9}{\sqrt{3\left[2\left(a+b+c\right)-3\right]}}=\frac{9}{\sqrt{3\left[6-3\right]}}=\frac{9}{3}=3\)(dpcm)

26 tháng 6 2017

bạn ơi thử coi lại cái đề bài đi, hình như phải là a,b,c < 9 thì mới có lí hơn đấy.