K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

Bài 1 :

Đặt :

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)

Thay vào \(x+y+z=49\) ta được :

\(\dfrac{3k}{2}=\dfrac{4k}{3}=\dfrac{5k}{4}=49\)

\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)

\(\Leftrightarrow49k=588\)

\(\Leftrightarrow k=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)

Vậy ....

Bài1:

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{90}=\dfrac{y}{80}=\dfrac{z}{75}=\dfrac{x+y+z}{90+80+75}=\dfrac{49}{245}=\dfrac{1}{5}\)

=>x=18;b=16;c=15

Vậy...

18 tháng 9 2018

a)

ta có \(\dfrac{3}{7}.\dfrac{9}{26}-\dfrac{1}{13}.\dfrac{1}{14}=\dfrac{3}{7}.9.\dfrac{1}{2}.\dfrac{1}{13}-\dfrac{1}{13}.\dfrac{1}{14}\)\(=\dfrac{1}{13}.\left(\dfrac{3}{7}.\dfrac{9}{2}-\dfrac{1}{14}\right)=\dfrac{1}{13}.\dfrac{26}{14}=\dfrac{1.26}{13.14}\)\(=\dfrac{1.13.2}{13.7.2}=\dfrac{1}{7}\)

b)\(x-\left(\dfrac{5}{2}+2x\right)=x-\dfrac{5}{2}-2x=-x-\dfrac{5}{2}=\dfrac{7}{4}\)

\(\Rightarrow-x=\dfrac{7}{4}+\dfrac{5}{2}=\dfrac{17}{4}\)

\(\Rightarrow x=-\dfrac{17}{4}\)(vì -x là số đối của x)

5 tháng 8 2017

2) \(\dfrac{x}{y}=\left(\dfrac{x}{y}\right)^2\)

\(\Rightarrow\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}=0\)

\(\Rightarrow\dfrac{x}{y}\left(\dfrac{x}{y}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{y}=0\Rightarrow x=0;y\in R\\\dfrac{x}{y}-1=0\Rightarrow\dfrac{x}{y}=1\Rightarrow x=y\end{matrix}\right.\)

3) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.2^5+2^{15}.1=2^{15}.33⋮33\rightarrowđpcm\)

4)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-y-4\right)^{200}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-y-4\right)^{200}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-12+y=0\Rightarrow x+y=12\\x-y-4=0\Rightarrow x-y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)+\left(x-y\right)=12+4\Rightarrow x+y+x-y=16\Rightarrow2x=16\Rightarrow x=8\\y=8-4=4\end{matrix}\right.\)

14 tháng 8 2018

A=\(\dfrac{5}{4-|x-1|}\)

\(|x-1|\ge0\Leftrightarrow-|x-1|\le0\Leftrightarrow4-|x-1|\le4\)

\(\Rightarrow\dfrac{1}{4-|x-1|}\ge\dfrac{1}{4}\)\(\Leftrightarrow\dfrac{5}{4-|x-1|}\ge\dfrac{5}{4}\)

Vậy GTLN của A là \(\dfrac{5}{4}\)\(\Leftrightarrow|x-1|=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

B=\(\dfrac{10}{2-\left(x-2\right)^2}\)

\(\left(x-2\right)^2\ge0\Leftrightarrow-\left(x-2\right)\le0\Leftrightarrow2-\left(x-2\right)\le2\)

\(\Rightarrow\dfrac{1}{2-\left(x-2\right)^2}\ge\dfrac{1}{2}\Leftrightarrow\dfrac{10}{2-\left(x-2\right)^2}\ge\dfrac{10}{2}\Leftrightarrow\dfrac{10}{2-\left(x-2\right)^2}\ge5\)Vậy GTLN của B là 5\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

2 tháng 9 2017

Ta có :

\(\dfrac{x}{10}=\dfrac{y}{5}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{10}\)

\(\dfrac{y}{2}=\dfrac{z}{3}\Leftrightarrow\dfrac{y}{10}=\dfrac{z}{15}\)

\(\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\)

\(\Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{20}=\dfrac{33}{7}\Leftrightarrow x=\dfrac{660}{7}\\\dfrac{y}{10}=\dfrac{33}{7}\Leftrightarrow y=\dfrac{330}{7}\\\dfrac{z}{15}=\dfrac{33}{7}\Leftrightarrow z=\dfrac{495}{7}\end{matrix}\right.\)

Vậy .....

2 tháng 9 2017

Cảm ơn bạn nhek

30 tháng 6 2017

bạn sử dụng 7 hằng đẳnng thức đó

a. A – B)3 = A3 – 3A2B + 3AB2 – B3

b. A2 – B2 = (A – B)(A + B)

c. (A + B)3 = A3 + 3A2B + 3AB2 + B3

d. A3 – B3 = (A – B)(A2 + AB + B2)

Bài 3: 

\(A=\dfrac{-5}{4}\cdot\dfrac{2}{5}x^2y\cdot x^2\cdot x^3y^4=\dfrac{-1}{2}x^7y^5\)

bậc là 12

Hệ số là -1/2

\(B=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot x^5y^4\cdot xy^2\cdot x^2y^5=\dfrac{2}{3}x^8y^{11}\)

Bậc là 19

Hệ số là 2/3

a) Ta có 2011 = x => 2012 = x + 1

Thay x + 1 = 2012 vào biểu thức ta dc:

x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1

Vậy giá trị của biểu thức là -1 khi x = 2011

b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46

Vậy ...

a: \(\left(2x-\dfrac{1}{2}\right)^3\)

\(=\left(2x\right)^3-3\cdot4x^2\cdot\dfrac{1}{2}+3\cdot2x\cdot\dfrac{1}{4}-\dfrac{1}{8}\)

\(=8x^3-6x^2+\dfrac{3}{2}x-\dfrac{1}{8}\)

b: \(\left(\dfrac{1}{2}x-y\right)\left(\dfrac{1}{2}x+y\right)=\dfrac{1}{4}x^2-y^2\)

c: \(\left(x+\dfrac{1}{3}\right)^3\)

\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}+3\cdot x\cdot\dfrac{1}{9}+\dfrac{1}{27}\)

\(=x^3+x^2+\dfrac{1}{3}x+\dfrac{1}{27}\)

d: \(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)

25 tháng 3 2018

kì khu mấn chi ri mi