K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

sai đề rồi bạn ạ

VD giả sử x=1;y=2;z=5 thì ta sẽ có \(\frac{3}{7}>\frac{1}{2}\)

là vô lí

28 tháng 3 2016

Bn xem lại  đề 

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

30 tháng 8 2019

Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}.\)

\(\frac{y}{y+z}>\frac{y}{x+y+z}\)

\(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\)\(\frac{x+y+z}{x+y+z}=1\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>1\)\(\left(1\right)\)

Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{2x+2y+2z}{x+y+z}=2\)

Hay \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)\(\left(đpcm\right)\)

18 tháng 8 2016

Vì x<y nên :                                           

\(\frac{a}{m}< \frac{b}{m}\)                                                            #\(\frac{a}{m}< \frac{b}{m}\)

\(\frac{a}{m}+\frac{a}{m}< \frac{b}{m}+\frac{a}{m}\)                                           \(\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)

\(\frac{2a}{m}< \frac{a+b}{m}\)                                                        \(\frac{a+b}{m}< \frac{2b}{m}\)

\(\frac{2a}{2m}< \frac{a+b}{2m}\)                                                        \(\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\frac{a}{m}< \frac{a+b}{2m}\)                                                           \(\frac{a+b}{2m}< \frac{b}{m}\)

=> x < z ( 1 )                                                                  => z < y ( 2)

TỪ (1) VÀ (2) TA SUY RA X < Z < Y

( Nếu có chỗ nào bạn ko hỉu thì ib cho mik nha mk sẽ chỉ bn ha )  ( ý mà nhớ là ..... ( ai cx muốn hì....hì...) )

22 tháng 8 2016

Ta có x = \(\frac{2a}{2m}\)\(\frac{a+b}{2m}\)= z

y = \(\frac{2b}{2m}\)\(\frac{a+b}{2m}\)= z

22 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2x < a+b/m < 2y

=> x < a+b/m : 2 < 2y

=> x < a+b/m . 1/2 < y

=> x < a+b/2m < y

Chứng tỏ ...

24 tháng 8 2016

Do x < y => a/m < b/m

=> a/m + a/m < a/m + b/m < b/m + b/m

=> 2a/m < a+b/m < 2b/m

=> a/m < a+b/m : 2 < b/m

=> x < a+b/2m < y

=> x < z < y ( đpcm)

12 tháng 3 2018

Ta có: x<y⇔a/m<b/m⇔a<bx(1)

Từ (1), Suy ra:

a<b⇔a+a<b+a⇔2a<a+b(2)

a<b⇔a+b<b+b⇔a+b<2b(3)

Từ (2);(3), ta có:

2a<a+b<2b⇔2a/2m<a+b/2m<2b/2m

⇔x<z<y(đpcm)