\(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm giá tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

Khai triển Abel ta có:

\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)

\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)

\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)

\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)

Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)

8 tháng 5 2017

Ta có: \(y=4x^3-x^4=x^3\left(4-x\right)=x.x.x.\left(4-x\right)\).
Vì vậy: \(3y=x.x.x.\left(12-4x\right)\).
Với \(0\le x\le4\) thì \(\left\{{}\begin{matrix}x\ge0\\12-4x\ge0\end{matrix}\right.\).
Áp dụng bất đẳng thức cô si cho bốn số: x,x,x, 12 - 3x ta có:
\(x.x.x.\left(12-3x\right)\le\left(\dfrac{x+x+x+12-3x}{4}\right)^4=81\).
Dấu bằng xảy ra khi: \(x=12-3x\)\(\Leftrightarrow4x=12\)\(\Leftrightarrow x=3\).
Như vậy: \(3y\le81\) \(\Leftrightarrow y\le27\) nên max của y bằng 27 khi x = 3.

15 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)

19 tháng 5 2021

Áp dụng bất đẳng thức Minkowski ta có:

√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2

≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2 

=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2 

≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82

Dấu "=" xảy ra khi: x=y=z=13 

NV
14 tháng 5 2020

\(H=\sum\frac{y}{x^2+1+2y+2}\le\sum\frac{y}{2x+2y+2}=\frac{1}{2}\sum\frac{y}{x+y+1}\)

Ta sẽ chứng minh \(H\le\frac{1}{2}\) hay \(\frac{y}{x+y+1}+\frac{z}{y+z+1}+\frac{x}{z+x+1}\le1\)

\(\Leftrightarrow\frac{x+1}{x+y+1}+\frac{y+1}{y+z+1}+\frac{z+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x+y+1\right)}+\frac{\left(y+1\right)^2}{\left(y+1\right)\left(y+z+1\right)}+\frac{\left(z+1\right)^2}{\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\left(x+1\right)\left(x+y+1\right)+\left(y+1\right)\left(y+z+1\right)+\left(z+1\right)\left(z+x+1\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{x^2+y^2+z^2+xy+yz+zx+3x+3y+3z+3}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x^2+y^2+z^2\right)+xy+yz+zx+3x+3y+3z+3+\frac{1}{2}\left(x^2+y^2+z^2\right)}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+3+\frac{3}{2}}=\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z\right)^2+3\left(x+y+z\right)+\frac{9}{2}}\)

\(VT\ge\frac{\left(x+y+z+3\right)^2}{\frac{1}{2}\left(x+y+z+3\right)^2}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

2 tháng 5 2019

Các bạn ơi giúp mk với

NV
18 tháng 2 2020

1/ \(P=\frac{1}{x+y+x+z}+\frac{1}{x+y+y+z}+\frac{1}{x+z+y+z}\)

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(P\le\frac{1}{2}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

Dấu "=" xảy ra khi \(x=y=z=\frac{3}{4}\)

2/ ĐKXĐ: ...

\(\Leftrightarrow4x^2-8x\sqrt{x+1}+3\left(x+1\right)\le0\)

\(\Leftrightarrow\left(2x-\sqrt{x+1}\right)\left(2x-3\sqrt{x+1}\right)\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\ge\sqrt{x+1}\\2x\le3\sqrt{x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\4x^2-x-1\ge0\\4x^2-9x-9\le0\end{matrix}\right.\) \(\Rightarrow\frac{-1+\sqrt{17}}{8}\le x\le3\)

\(\Rightarrow x=\left\{1;2;3\right\}\Rightarrow\sum x^2=1+4+9=14\)

NV
2 tháng 1 2020

\(VT=\sqrt[3]{1.1.\left(x+3y\right)}+\sqrt[3]{1.1.\left(y+3z\right)}+\sqrt[3]{1.1.\left(z+3x\right)}\)

\(VT\le\frac{1}{3}\left(1+1+x+3y\right)+\frac{1}{3}\left(1+1+y+3z\right)+\frac{1}{3}\left(1+1+z+3x\right)\)

\(VT\le\frac{1}{3}\left(6+4\left(x+y+z\right)\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

23 tháng 2 2020

Dấu = k xảy ra vì nếu x=y=z=\(\frac{1}{3}\) thì k thỏa mãn đk đề bài.