Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)
Ta có: a + b\(\ge\)\(2\sqrt{ab}\)
b+c\(\ge\)\(2\sqrt{bc}\)
c+a\(\ge\)\(2\sqrt{ca}\)
\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)
b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)
Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b
\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab
CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab
\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab
= 2(a2+b2)+2ab =6(đpcm)
c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a
Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)
\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)
\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)
\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)
Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc
\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc
\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)
Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc
\(\Leftrightarrow\) 1 \(\ge\) 8abc
\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)
Từ (1),(3) kết hợp với (2)
\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)
Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\Rightarrow2ab=\left(a+b\right)^2-4\)
Ta có: \(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
\(\le\sqrt{2\left(a^2+b^2\right)}-2=2\sqrt{2}-2\)
\(\Rightarrow2M\le2\sqrt{2}-2\Rightarrow M\le\sqrt{2}-1\)
Đẳng thức xảy ra khi \(a=b=\sqrt{2}\)
Ta cần chứng minh :
\(P=a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )
\(\Rightarrow P=a^2+b^2+c^2\ge ab+bc+ca=9\)
Vậy GTNN của P là 9 khi \(a=b=c=\sqrt{3}\)
Còn về GTLN thì bạn còn ghi đề bài thiếu cho a,b,c>? . Chừng nào sửa lại thì t làm
Không mất tỉnh tổng quát, giả sử \(0\le a\le b\le c\Rightarrow\left\{{}\begin{matrix}b+c\le3\\a\left(a-b\right)\le0\\a\left(a-c\right)\le0\end{matrix}\right.\)
\(P=\left[a\left(a-b\right)+b^2\right]\left[a\left(a-c\right)+c^2\right]\left[\left(b+c\right)^2-3bc\right]\)
\(\Rightarrow P\le b^2c^2\left(9-3bc\right)=12.\frac{bc}{2}.\frac{bc}{2}\left(3-bc\right)\le\frac{4}{9}\left(\frac{bc}{2}+\frac{bc}{2}+3-bc\right)^3=12\)
\(\Rightarrow P_{max}=12\) khi \(\left(a;b;c\right)=\left(0;1;2\right)\) và hoán vị
Giả sử \(a\ge b\ge c\ge0\)
Ta sẽ chứng minh:\(P\le\frac{4}{243}\left(a+b+c\right)^6\)
Thật vậy:
\(P-\frac{4}{243}\left(a+b+c\right)^6\)
\(=\)
\(-\frac{1}{243}\left(a-2b\right)^2\left(2a-b\right)^2\left(a^2+11ab+b^2\right)\le0\) (cái này nhóm lại là thấy ngay:D)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và hoán vị.
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)[3a(a+2b)+3b(b+2a)]\)
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+12ab)\)
Theo BĐT Cô-si: \(a^2+b^2\geq 2ab\Rightarrow 12ab\leq 6(a^2+b^2)\)
Do đó:
\((a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq (a^2+b^2)(3a^2+3b^2+6a^2+6b^2)=9(a^2+b^2)^2\)
Mà \(a^2+b^2\leq 2\)
\(\Rightarrow (a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)})^2\leq 9.2^2=36\)
\(\Rightarrow a\sqrt{3a(a+2b)}+b\sqrt{3b(b+2a)}\leq \sqrt{36}=6\)
(đpcm)
Dấu bằng xảy ra khi $a=b=1$