ΔABC nhọn có 3 đường cao AK,BM,CN cắt nhau tại H.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

a.Xét ΔAMB,ΔANCΔ���,Δ��� có:
Chung ^A�^

ˆAMB=ˆANC(=90o)���^=���^(=90�)

ΔAMBΔANC(g.g)→Δ���∼Δ���(�.�)

b.Từ câu a AMAN=ABAC→����=����

AMAB=ANAC→����=����

Mà ˆMAN=ˆBAC���^=���^

ΔAMNΔABC(c.g.c)→Δ���∼Δ���(�.�.�)

c.Từ câu b

SAMNSABC=(ANAC)2=19→��������=(����)2=19

SABC=9SAMN→����=9����

d.Xét ΔANH,ΔAKBΔ���,Δ��� có:

Chung ^A�^

ˆANH=ˆAKB(=90o)���^=���^(=90�)

ΔANHΔAKB(g.g)→Δ���∼Δ���(�.�)

ANAK=AHAB→����=����

ANAH=AKAB→����=����

Mà ˆNAK=ˆBAH���^=���^

ΔANKΔAHB(c.g.c)→Δ���∼Δ���(�.�.�)

ˆAKN=ˆABH→���^=���^

Tương tự chứng minh được ˆAKM=ˆACH���^=���^

Từ câu a ˆABM=ˆACN→���^=���^

ˆNKA=ˆABH=ˆABM=ˆACN=ˆACH=ˆAKM→���^=���^=���^=���^=���^=���^

KA→�� là phân giác ˆNKM���^

Tương tự NC�� là phân giác ˆMNK���^

Mà AKCN=HH��∩��=�→� là giao các đường phân giác ΔMNKΔ���

loading...

 

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

4 tháng 5 2016

Bài 1:

 Áp dụng BĐT Cô-si:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

CMTT rồi cộng lại, ta có đpcm.

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

a: Xét tứ giác ADCH có

M là trung điểm của AC

M là trung điểm của HD

Do đó: ADCH là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

HE//AD

HE=AD
Do đó:ADHE là hình bình hành