K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

sai hay đúng?

a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có

góc A chung

=>ΔAMB đồng dạng vơi ΔANC

=>AM/AN=AB/AC

=>AM*AC=AB*AN; AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC
góc A chung

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

Do đó: ΔABM đồng dạng với ΔACN

Suy ra: AM/AN=AB/AC
hay AM/AB=AN/AC; \(AM\cdot AC=AB\cdot AN\)

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

Do đó: ΔAMN đồng dạng với ΔABC

c: \(\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2=\dfrac{1}{4}\)

a) Xét ΔAMB và ΔANC có

\(\widehat{AMB}=\widehat{ANC}\left(=90^0\right)\)

\(\widehat{BAM}\) chung

Do đó: ΔAMB∼ΔANC(g-g)

b) Ta có: ΔAMB∼ΔANC(cmt)

\(\frac{AM}{AN}=\frac{AB}{AC}\)

hay \(\frac{AM}{AB}=\frac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\frac{AM}{AB}=\frac{AN}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAMN∼ΔABC(c-g-c)

\(\frac{S_{AMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2=\frac{MN^2}{BC^2}\)(tỉ số diện tích giữa hai tam giác đồng dạng)

c) Xét ΔINB vuông tại N và ΔIMC vuông tại M có

\(\widehat{NIB}=\widehat{MIC}\)(hai góc đối đỉnh)

Do đó: ΔINB∼ΔIMC(góc nhọn)

\(\frac{IN}{IM}=\frac{IB}{IC}\)

hay \(MI\cdot IB=CI\cdot IN\)(đpcm)

a: XétΔAMB vuông tại M và ΔANC vuông tại N có

góc A chung

Do đó: ΔAMB\(\sim\)ΔANC

b: Ta có: ΔANH vuông tại N

mà NI là đường trung tuyến

nên NI=AH/2(1)

Ta có: ΔAMH vuông tại M

mà MI là đường trung tuyến

nên MI=AH/2(2)

Từ (1) và (2) suy ra NI=MI(3)

Ta có: ΔNBC vuông tại N

mà NK là đường trung tuyến

nên NK=BC/2(4)

Ta có: ΔMBC vuông tại M

mà MK là đường trung tuyến

nên MK=BC/2(5)

Từ (4), (5) suy ra NK=MK(6)

Từ (3) và (6) suy ra IK là đường trung trực của MN