Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB vuông tại M và ΔANC vuông tạiN có
góc A chung
=>ΔAMB đồng dạng vơi ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN; AM/AB=AN/AC
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc A chung
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
góc BAM chung
Do đó: ΔABM đồng dạng với ΔACN
Suy ra: AM/AN=AB/AC
hay AM/AB=AN/AC; \(AM\cdot AC=AB\cdot AN\)
b: Xét ΔAMN và ΔABC có
AM/AB=AN/AC
góc MAN chung
Do đó: ΔAMN đồng dạng với ΔABC
c: \(\dfrac{S_{AMN}}{S_{ABC}}=\left(\dfrac{AM}{AB}\right)^2=\dfrac{1}{4}\)
a) Xét ΔAMB và ΔANC có
\(\widehat{AMB}=\widehat{ANC}\left(=90^0\right)\)
\(\widehat{BAM}\) chung
Do đó: ΔAMB∼ΔANC(g-g)
b) Ta có: ΔAMB∼ΔANC(cmt)
⇒\(\frac{AM}{AN}=\frac{AB}{AC}\)
hay \(\frac{AM}{AB}=\frac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\frac{AM}{AB}=\frac{AN}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAMN∼ΔABC(c-g-c)
⇒\(\frac{S_{AMN}}{S_{ABC}}=\left(\frac{MN}{BC}\right)^2=\frac{MN^2}{BC^2}\)(tỉ số diện tích giữa hai tam giác đồng dạng)
c) Xét ΔINB vuông tại N và ΔIMC vuông tại M có
\(\widehat{NIB}=\widehat{MIC}\)(hai góc đối đỉnh)
Do đó: ΔINB∼ΔIMC(góc nhọn)
⇒\(\frac{IN}{IM}=\frac{IB}{IC}\)
hay \(MI\cdot IB=CI\cdot IN\)(đpcm)
a: XétΔAMB vuông tại M và ΔANC vuông tại N có
góc A chung
Do đó: ΔAMB\(\sim\)ΔANC
b: Ta có: ΔANH vuông tại N
mà NI là đường trung tuyến
nên NI=AH/2(1)
Ta có: ΔAMH vuông tại M
mà MI là đường trung tuyến
nên MI=AH/2(2)
Từ (1) và (2) suy ra NI=MI(3)
Ta có: ΔNBC vuông tại N
mà NK là đường trung tuyến
nên NK=BC/2(4)
Ta có: ΔMBC vuông tại M
mà MK là đường trung tuyến
nên MK=BC/2(5)
Từ (4), (5) suy ra NK=MK(6)
Từ (3) và (6) suy ra IK là đường trung trực của MN