Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=2^{3.2019}=8^{2019}< 10^{2019}\)
=> A có tổng số các chữ số nhiều nhất là: 2019
B là tổng các các chữ số của A
=> \(B\le2019.9=18171\)
C là tổng các chữ số của B
=> \(C\le1+8+1+7+1=18\)
D là tổng các chữ số của D
=> \(D\le1+8=9\)
Mặt khác ta có: \(A=\left(2^3\right)^{2019}\equiv\left(-1\right)^{2019}\equiv-1\left(mod9\right)\)=> \(D\equiv-1\equiv8\left(mod9\right)\)
=> D=8
Ta Có:
A=23.2019=82019<102019
=> A có tổng số các chữ số nhiều nhất là: 2019
B là tổng các các chữ số của A
=>B≤2019.9=18171
C là tổng các chữ số của B
=> 1+8+1+7+1=18
D là tổng các chữ số của DD≤1+8=9
Mặt khác ta có:
A=(23)2019≡(−1)2019≡−1(mod9)
=>D≡−1≡8(mod9)
=> D=8
Cho a là tổng các chữ số của (29)2003, b là tổng các chữ số của a, c là tổng các chữ số của b. Tìm c
(2^9)^1945=512^1945<1000^1945=10^1945.3 nen (2^9)^1945 có số chữ nhỏ hơn 1945.3=5835 đỗ à tổng là các chữ số của(2^9)^1945 nên a<5835.9=52515(chữ số thứ nhất là 9)B là tổng các chữ số của a (nhiều nhất 5 chữ số do < 52515)do do b<5.9=45
Do một số trừ đi tổng các chữ số của nó thì chia hết cho 9 (đệ đag chug mìh ; giống dấu hiệu chia hết cho (2^9)^1945 - à:9 mà(2^9)^1945 chia 9 dư 8 nên a chia 9 dư 8.a-bchia hết cho 9 nên b chia 9 dư 8.Nên B có tổng các chữ số 8
a) 3100=(32)50=950<1050=100000...000(50 c/s 0 ) =>tổng các c/s của 950<9+9+9+.......+9 (50 số hạng
Ta có:950=1050-n.(n>1;n thuộc N*) =>tổng các c/s của 950<450
=>950<1050-1 Vì 450<459=>tổng các c/s của 950<459(ĐPCM)
=>950<999..999 (50 c/s 9)
=>tổng các c/s của 950<tổng các c/s của 999..999
link: https://olm.vn/hoi-dap/detail/34937363214.html
Khác xíu ở chổ \(\left(2^9\right)^{2019}và\left(2^9\right)^{2009}\)