K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2019

Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)

Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)

\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)

Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)

\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...

Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!

P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v

19 tháng 9 2019

Ấy nhầm:v "Ta sẽ chứng minh \(A\ge\frac{7}{8}\)" Thế này mới đúng nha, đánh lanh tay quá nên nhầm:)))

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

17 tháng 4 2018

\(A=\frac{a}{2-a}+\frac{1-a}{1+a}=\frac{2a^2-2a+2}{\left(1+a\right)\left(2-a\right)}\)

\(=1-\frac{3a\left(1-a\right)}{\left(1+a\right)\left(2-a\right)}\le1\)

Min tìm tương tự

15 tháng 4 2017

\(A=\dfrac{x^2}{2-x^2}+\dfrac{1-x^2}{1+x^2}=\dfrac{2}{2-x^2}+\dfrac{2}{1+x^2}-2\)

Áp dụng BĐT cauchy:\(\dfrac{1}{2-x^2}+\dfrac{1}{1+x^2}\ge\dfrac{4}{3}\)

do đó \(A\ge\dfrac{8}{3}-2=\dfrac{2}{3}\)

dấu = xảy ra khi \(x=\dfrac{\sqrt{2}}{2}\)(t/m )

15 tháng 4 2017

mk mới học lớp 6 nên thông cảm

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

6 tháng 5 2018

Đặt \(x^2=p\left(0\le p\le1\right)\)

Ta có : \(P=\frac{p}{2-p}+\frac{1-p}{1+p}=-2+\frac{2}{2-p}+\frac{2}{1+p}\)

\(=-2+2\left(\frac{1}{2-p}+\frac{1}{1+p}\right)=2\left(\frac{3}{\left(2-p\right)\left(1+p\right)}-1\right)\)

\(=2\left(\frac{3}{2+p\left(1-p\right)}-1\right)\)

Do \(0\le p\le1\Rightarrow p\left(1-p\right)\ge0\) \(\Rightarrow P\le2\left(\frac{3}{2}-1\right)=1\) có MAX là 1

Ta có : \(p\left(1-p\right)\le\frac{\left(p+1-p\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow P\ge2\left(\frac{3}{2+\frac{1}{4}}-1\right)=\frac{2}{3}\)Có MIN là \(\frac{2}{3}\)

28 tháng 2 2019

\(P=\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)

\(\Leftrightarrow P=\frac{x^2-2+2}{2-x^2}+\frac{-1-x^2+2}{1+x^2}\)

\(\Leftrightarrow P=-1+\frac{2}{2-x^2}-1+\frac{2}{1+x^2}\)

\(\Leftrightarrow P=-1-1+2\left(\frac{1}{2-x^2}+\frac{1}{1+x^2}\right)\)

Ta sẽ c/m \(\frac{1}{2-x^2}+\frac{2}{1+x^2}\le\frac{3}{2}\)

\(\frac{1}{2-x^2}+\frac{1}{1+x^2}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{1+x^2+2-x^2}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{3}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{1}{2}\)

\(\Leftrightarrow2\le2+2x^2-x^2-x^4\)

\(\Leftrightarrow0\le x^2-x^4\)

\(\Leftrightarrow0\le x^2\left(1-x^2\right)\)( luôn đúng với \(0\le x\le1\))

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\1-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

=> \(P\le-1-1+2.\frac{3}{2}=-2+3=1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\1-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(P_{max}=1\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

P/S: có gì sai sót xin bỏ qua