Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy các tỉ số đó bằng 1/2
Đặt \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=k\)
\(\Rightarrow a=kb+kc\)và \(b=kc+ka\)và \(c=ka+kb\)
\(\Rightarrow a+b+c=kb+kc+kc+ka+ka+kb\)
\(a+b+c=k\left(b+c+c+a+a+b\right)\)
\(a+b+c=k\left[2\left(a+b+c\right)\right]\)
\(\frac{a+b+c}{2\left(a+b+c\right)}=k\)
\(\Rightarrow k=\frac{1}{2}\)
Mà \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=k\)
Vậy \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
R = 3,142592653589793238462643383279.... nhưng trong học người ta chỉ lấy đến 3,14
Số Pi là tên của chữ thứ 16 của mẫu tự Hy lạp. Nó được định nghĩa như một hằng số , là tỷ số giữa chu vi vòng tròn với đường kính của nó.
Trong toán học, tập xác định (còn gọi là miền xác định) của một hàm số là tập hợp các giá trị của biến số làm cho hàm số đó có nghĩa.
có muốn mìh tìm lun cho k?
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
a ) Số Pi
b ) Xấp xỉ 3,14159
c ) Số vô tỉ
số p
3,14
I
**** mình đi