K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2022

Mọi điểm M biểu diễn z đều phải thỏa mãn 2 điều kiện: vừa thuộc đường tròn (C) vừa thuộc đường thẳng \(\Delta\)  (tham số P)

Do đó, M là giao điểm của (C) và \(\Delta\)

Hay tham số P  phải thỏa mãn sao cho (C) và \(\Delta\) có ít nhất 1 điểm chung

Hay hệ pt nói trên có nghiệm (thật ra chi tiết đó là thừa, chỉ cần biện luận (C) và \(\Delta\) có ít nhất 1 điểm chung \(\Rightarrow d\left(I;\Delta\right)\le R\) là đủ)

22 tháng 4 2022

từ chỗ \(\left(\Delta\right)\) con có được suy ra tập hợp \(z\) là một đường thẳng \(y=-2x+\dfrac{P-3}{2}\) không ạ?

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i | 2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z 3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z 4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là...
Đọc tiếp

1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i |

2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z

3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z

4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là số thực

5. Cho 3 điểm A, B, M lần lượt biểu diễn các số phức -4, 4i, x + 3i. Với giá trị thực nào của x thì A, B, M thẳng hàng?

6. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Xác định phần ảo của số phức \(3z_1-2z_2\)

7. Nếu mô đun số phức z bằng m thì mô đun của số phức \(\left(1-i\right)^2z\) bằng?

8. Trong tất cả các số phức z thỏa mãn hệ thức | z-1+3i | = 3. Tìm min | z-1-i |

9. Trong mặt phẳng phức tìm điểm biểu diễn số phức z = \(\frac{i^{2017}}{3+4i}\)

10. Trong mặt phẳng phức với hệ trục tọa độ Oxy, điểm biểu diễn của các số phức z = 3 + bi với b \(\in\) R luôn nằm trên đường có phương trình là: A. y = x B. x = 3 C. y = x + 3 D. y = 3

11. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Tổng hai số phức là?

12. Cho số phức z = 2 + 5i. Tìm số phức \(w=iz+\overline{z}\)

13. Ký hiệu \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2+z+1=0\). Tìm trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(w=\frac{i}{z_0}\): A. \(M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) B. \(M\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)\) C. \(M\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) D. \(M\left(-\frac{1}{2};-\frac{\sqrt{3}}{2}\right)\)

14. Cho số phức z thỏa mãn hệ thức | z+7-5i | = | z-1-11i |. Biết rằng số phức z = x + yi thỏa mãn \(\left|z-2-8i\right|^2+\left|z-6-6i\right|^2\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \(p=x^2-y^2\)?

15. Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(2z^2-6z+5=0\). Điểm nào sau đây biểu diễn số phức \(iz_0\): A. \(M\left(\frac{3}{2};\frac{1}{2}\right)\) B. \(M\left(\frac{3}{2};-\frac{1}{2}\right)\) C. \(M\left(-\frac{1}{2};\frac{3}{2}\right)\) D. \(M\left(\frac{1}{2};\frac{3}{2}\right)\)

16. Tính mô đun của số phức \(w=z^2+i\overline{z}\) biết z thỏa mãn \(\left(1+2i\right)z+\left(2+3i\right)\overline{z}=6+2i\)

17. Trong mặt phẳng phức, cho 3 điểm A, B, C lần lượt biểu diễn 3 số phức \(z_1=1+i\), \(z_2=\left(1+i\right)^2\), \(z_3=a-i\left(a\in R\right)\). Để tam giác ABC vuông tại B thì A bằng? A. -3 B. 3 C. -4 D. -2

18. Cho số phức z thỏa mãn (1+2i)z = 3+i. Tính giá trị biểu thức \(\left|z\right|^4-\left|z\right|^2+1\)

19. Cho số phức z = a + (a-1)i (a\(\in R\)). Giá trị thực nào của a để | z | = 1 ?

20. Cho số phức z thoả mãn hệ thức | z+5-i | = | z+1-7i |. Tìm giá trị lớn nhất của biểu thức P = | |z-4-i| - |z-2-4i| |

21. Trong các số phức z = a + bi thỏa mãn | z-1+2i | =1, biết rằng | z+3-i | đạt giá trị nhỏ nhất. Tính \(p=\frac{a}{b}\)

22. Gọi A, B, C lần lượt là các điểm biểu diễn các số phức \(z_1=-1+3i\), \(z_2=-3-2i\), \(z_3=4+i\). Chọn kết luận đúng nhất: A. Tam giác ABC cân B. Tam giác ABC đều C. Tam giác ABC vuông D. Tam giác ABC vuông cân

23. Cho số phức z = 5-3i. Tính \(1+\overline{z}+\left(\overline{z}\right)^2\)

24. Cho \(f\left(z\right)=z^3-3z^2+z-1\) với z là số phức. Tính \(f\left(z_0\right)-f\left(\overline{z_0}\right)\) biết \(z_0=1-2i\)

25. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M (3;-4) là: A. \(\sqrt{13}\) B. \(2\sqrt{2}\) C. \(2\sqrt{5}\) D. \(2\sqrt{10}\)

6
NV
26 tháng 4 2019

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

NV
26 tháng 4 2019

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

31 tháng 8 2019

Đáp án B.

Đặt  suy ra tập hợp các điểm M(z) = (x;y)  là đường tròn (C) có tâm I(3;4) và bán kính R =  5

Ta có 

Ta cần tìm P sao cho đường thẳng ∆  và đường tròn (C) có điểm chung 

Do đó 

19 tháng 9 2018

25 tháng 10 2019

Đáp án B

Đặt  suy ra tập hợp các điểm M(z)= (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R= 5 .

 

Ta cần tìm P sao cho đường thẳng và đường tròn (C) có điểm chung 

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Đặt \(z=a+bi\). Ta có: \(|z|\leq 2\Leftrightarrow a^2+b^2\leq 4\)

Có:

\(p=2|z+1|+2|z-1|+|z-\overline{z}-4i|\)

\(=2|(a+1)+bi|+2|(a-1)+bi|+|(a+bi)-(a-bi)-4i|\)

\(=2\sqrt{(a+1)^2+b^2}+2\sqrt{(a-1)^2+b^2}+\sqrt{(2b-4)^2}\)

\(=2\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}+4-2b\)

(do \(a^2+b^2\leq 4\Rightarrow b^2\leq 4\Rightarrow b\leq 2\Rightarrow \sqrt{(2b-4)^2}=4-2b\) )

\(\Leftrightarrow p=2[\sqrt{(a+1)^2+b^2}+\sqrt{(a-1)^2+b^2}-b+2]\)

Theo BĐT Mincopxky :

\(p\geq 2(\sqrt{(a+1+1-a)^2+(b+b)^2}-b+2)\)

\(\Leftrightarrow p\geq 2(2\sqrt{b^2+1}-b+2)\)

Xét \(f(b)=2\sqrt{b^2+1}-b+2\) với \(b\in [-2;2]\)

Có: \(f'(b)=\frac{2b}{\sqrt{b^2+1}}-1=0\Leftrightarrow b=\pm \frac{\sqrt{3}}{3}\)

Lập bảng biến thiên ta suy ra \(f(b)_{\min}=f(\frac{\sqrt{3}}{3})=2+\sqrt{3}\)

\(\Rightarrow p\geq 2f(b)\geq 2(2+\sqrt{3})\)

Vậy \(p_{\min}=4+2\sqrt{3}\)

Dấu bằng xảy ra khi \(b=\frac{\sqrt{3}}{3}; \frac{a+1}{1-a}=\frac{b}{b}=1\Rightarrow a=0\)

NV
8 tháng 4 2022

Đặt \(z=x+yi\)

\(\left|x+yi+x-yi+2\right|+2\left|x+yi-x+yi-2i\right|\le12\)

\(\Leftrightarrow\left|2x+2\right|+4\left|\left(y-1\right)i\right|\le12\)

\(\Leftrightarrow\left|x+1\right|+2\left|y-1\right|\le6\)

Tập hợp z là miền trong hình thoi (gồm cả biên) với 4 đỉnh: \(A\left(-7;1\right)\) ; \(B\left(-1;4\right)\) ; \(C\left(5;1\right)\) ; \(D\left(-1;-2\right)\)

\(P^2=\left|z-4-4i\right|^2=\left(x-4\right)^2+\left(y-4\right)^2\)  có tập hợp là đường tròn (C) tâm \(I\left(4;4\right)\) bán kính \(R=P>0\) sao cho (C) và hình thoi ABCD có ít nhất 1 điểm chung

Từ hình vẽ ta thấy \(P_{max}\) khi (C) đi qua A \(\Rightarrow P=IA\) và \(P_{min}\) khi (C) tiếp xúc BC  \(\Rightarrow P=d\left(I;BC\right)\)

\(\overrightarrow{IA}=\left(-11;-3\right)\Rightarrow M=IA=\sqrt{130}\)

\(\overrightarrow{BC}=\left(6;-3\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtpt

Phương trình BC: \(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

\(\Rightarrow m=d\left(I;BC\right)=\dfrac{\left|4+2.4-7\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow M+m=\sqrt{130}+\sqrt{5}\)

NV
8 tháng 4 2022

undefined

25 tháng 11 2018

17 tháng 7 2018

đặc \(z=a+bi\) với \(\left(a;b\in R;i^2=-1\right)\)

ta có : \(\left|z-\overline{z}+2i\right|=\left|\dfrac{3}{2}z+\dfrac{1}{2}\overline{z}\right|\)

\(\Leftrightarrow\left|a+bi-a+bi+2i\right|=\left|\dfrac{3}{2}a+\dfrac{3}{2}bi+\dfrac{1}{2}a-\dfrac{1}{2}bi\right|\)

\(\Leftrightarrow\sqrt{\left(2b+2\right)^2}=\sqrt{\left(2a+b\right)^2}\) \(\Leftrightarrow2b+2=2a+b\Leftrightarrow a=\dfrac{b}{2}+1\)

ta có : \(P=\left|z-3\right|=\left|a+bi-3\right|=\sqrt{\left(a-3\right)^2+b^2}\)

\(\Leftrightarrow P=\sqrt{\left(\dfrac{b}{2}+1-3\right)^2+b^2}=\sqrt{\left(\dfrac{b}{2}-2\right)^2+b^2}\)

\(\Leftrightarrow P=\sqrt{\dfrac{5b^2}{4}-2b+4}\ge\sqrt{4-\dfrac{\left(-2\right)^2}{4.\dfrac{5}{4}}}=\dfrac{4\sqrt{5}}{5}\)

dấu "=" xảy ra khi \(b=\dfrac{2}{2.\dfrac{5}{4}}=\dfrac{4}{5}\)\(a=\dfrac{7}{5}\) \(\Leftrightarrow z=\dfrac{7}{5}+\dfrac{4}{5}i\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Ta có:

\(|z^2+1|=4|z|\Leftrightarrow \frac{|z^2+1|^2}{|z|^2}=16\)

\(\Leftrightarrow 16=\frac{(z^2+1)(\overline{z^2}+1)}{|z|^2}=\frac{|z|^4+z^2+\overline{z^2}+1}{|z|^2}\)

\(\Leftrightarrow 16=\frac{|z|^4+(z+\overline{z})^2-2|z|^2+1}{|z|^2}\geq \frac{|z|^4-2|z|^2+1}{|z|^2}\)

Đặt \(|z|^2=t\Rightarrow 16\geq \frac{t^2-2t+1}{t}\)

\(\Leftrightarrow t^2-18t+1\leq 0\Leftrightarrow 9-4\sqrt{5}\leq t\leq 9+4\sqrt{5}\)

\(\Rightarrow \sqrt{5}-2\leq |z|\leq \sqrt{5}+2\) hay \(|z|_{\min}=\sqrt{5}-2;|z|_{\max}=\sqrt{5}+2\)

Tổng quát: Nếu \(|z+\frac{1}{z}|=k\Rightarrow |z|_{\max}=\frac{\sqrt{k^2+4}+k}{2};|z|_{\min}=\frac{\sqrt{k^2+4}-k}{2}\)