Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x nguyên thì a - 3 chia hết cho 2a
=> 2.(a - 3) chia ht cho 2a
=> 2a - 6 chia hết cho 2a
Do 2a chia hết cho 2a => 6 chia hết cho 2a
=> 3 chia hết cho a
=> a thuộc {1 ; -1 ; 3 ; -3}
Ủng hộ mk nha ◆_◆★_★^_-
Để x nguyên thì a - 3 chia hết cho 2a
=> 2.(a - 3) chia ht cho 2a
=> 2a - 6 chia hết cho 2a
Do 2a chia hết cho 2a => 6 chia hết cho 2a
=> 3 chia hết cho a
=> a thuộc {1 ; -1 ; 3 ; -3}
Ta có:\(\frac{a-4}{a}=\frac{a}{a}-\frac{4}{a}=1-\frac{4}{a}\)
Để \(x\inℤ\)thì\(1-\frac{4}{a}\inℤ\Rightarrow\frac{4}{a}\inℤ\Rightarrow4⋮a\)
\(a\in\left\{1;-1;2;-2;4;-4\right\}\)
Vậy \(a\in\left\{1;-1;2;-2;4;-4\right\}\)
ta có (a-5) ::3a <=> 3(a-5) :: 3a <=> 3a -15 :: 3a <=> 15 ::3a <=> 5::a
như vậy a ={-1,+1,-5,+5}
a) d = -9b nên P(3) = 27a + 9b + 3c + d = 27a + 3c ; P(-3) = -27a + 9b - 3c + d = -27a - 3c
=> P(3).P(-3) = (27a + 3c)(-27a - 3c) = -(27a + 3c)2\(\le0\)
b) Để\(A\in Z\)thì\(n+1⋮n^2+2\)nên bội của n + 1 là (n + 1)(n - 1) chia hết cho n2 + 2
\(\Rightarrow n^2+2-3⋮n^2+2\Rightarrow3⋮n^2+2\)mà\(n^2+2\ge2\)=> n2 + 2 = 3 => n2 = 1 => n = -1 ; 1.Thử lại :
n | -1 | 1 |
n + 1 | 0 | 2 |
n2 + 2 | 3 | 3 |
A | 0 (chọn) | \(\frac{2}{3}\)(loại) |
Vậy n = -1
Để \(x\in Z\)
\(\Rightarrow\frac{a-5}{a}\in Z\)
\(1-\frac{5}{a}\in Z\)
\(\Rightarrow\frac{5}{a}\in Z\Leftrightarrow a\inƯ\left(5\right)\)
\(\Rightarrow a\in\left\{-5;-1;1;5\right\}\)( thỏa mãn điều kiện xác định )
Vậy \(a\in\left\{-5;-1;1;5\right\}\)thì \(x\in Z\)
x = (a-5)/a --> x = 1 - 5/a --> với a = 1 hoặc a = 5 thì x là số nguyên?
a = 1, x = -4, a = 5, x = 0