\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

Tính P

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

19 tháng 12 2017

cộng thêm 1 của mỗi đẳng thức :

\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)

hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+b}=\frac{a+b+c}{c+a}\)

với a + b + c = 0 thì :

b + c = -a ; a + b = -c ; c + a = -b

nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\left(\frac{a}{-a}\right)+3.\left(\frac{c}{-c}\right)+1998.\left(\frac{b}{-b}\right)\)

hay \(20.\left(-1\right)+3.\left(-1\right)+1998.\left(-1\right)=-20+\left(-3\right)+\left(-1998\right)=-2021\)

với a + b + c khác 0 thì : a = b = c

nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\frac{1}{2}+3.\frac{1}{2}+1998.\frac{1}{2}=\frac{2021}{2}\)

19 tháng 12 2017

Nếu a+b+c = 0 => Biểu thức = 20.(-1)+3.(-1)+1998.(-1) = -2021

Nếu a+b+c khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2

=> Biểu thức = 20.1/2+3.1/2+1998.1/2 = 2021/2

Vậy ............

k mk nha

28 tháng 1 2018

1,

Ta có: \(x^2\ge0;\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|\ge0\)

\(\Rightarrow x^2+\left|y-13\right|+14\ge14\)

\(\Rightarrow\frac{1}{x^2+\left|y-13\right|+14}\le\frac{1}{14}\)

\(\Rightarrow P=\frac{12}{x^2+\left|y-13\right|+14}\le\frac{12}{14}=\frac{6}{7}\)

Dấu "=" xảy ra khi x = 0, y = 13

Vậy Pmin = 6/7 khi x = 0, y = 13

2, \(P=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\)

Để P có GTLN thì\(\frac{7}{n-5}\) có GTLN => n - 5 có GTNN và n - 5 > 0 => n = 6

28 tháng 1 2018

3,

Ta có: \(10\le n\le99\)

\(\Rightarrow20\le2n\le198\)

\(\Rightarrow2n\in\left\{36;64;100;144;196\right\}\)

\(\Rightarrow n\in\left\{18;32;50;72;98\right\}\)

\(\Rightarrow n+4\in\left\{22;36;50;72;98\right\}\)

Ta thấy chỉ có 36 là số chính phương 

Vậy n = 32

4,

ÁP dụng TCDTSBN ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (vì a+b+c khác 0)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}}\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}=\frac{2c}{a}\cdot\frac{2b}{c}\cdot\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy B = 8 

18 tháng 12 2018

Áp dụng tính chất dãy tỉ số bằng nhau, có :

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\)\(=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}\)\(=\frac{a+b+c}{c+a+b}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}=2\left(\frac{a+b}{c}-\frac{c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\right)\\\frac{b+c-a}{a}=1\Rightarrow\frac{b+c}{a}=2\\\frac{a+c-b}{b}=1\Rightarrow\frac{a+c}{b}=2\end{cases}}\) ( Tương tự )

Có : \(\left(1+\frac{b}{a}\right)\cdot\left(1+\frac{a}{c}\right)\cdot\left(1+\frac{c}{b}\right)=\frac{a+b}{a}\cdot\frac{a+c}{c}\cdot\frac{b+c}{b}\)

Hay:                                                              \(=\frac{a+b}{c}\cdot\frac{b+c}{a}\cdot\frac{a+c}{b}\)( phép nhân có tính chất giao hoán )

                                                                     \(=2\cdot2\cdot2=8\)

21 tháng 11 2016

1/ \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\\ \frac{2x}{3}-3=\frac{2}{5}.\left(-10\right)\)

=> \(\frac{2x}{3}-3=-4\\ \frac{2x}{3}=-4+3\\ \frac{2x}{3}=1\)

=> 2x = 1.3

2x = 3

=> x = 3:2

x = 1,5

vậy x = 1,5

 

20 tháng 12 2018

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=2\)

\(\Leftrightarrow a+b=2c=b+c=2a=a+c=2b\Rightarrow a=b=c\)

\(M=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)=2^3=8\)