Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (5 + 52) + (53 + 54) +....+(59 + 510)
S = 1.30 + 52.30+....+58.30
S = 30.(1+52+....+58)
S chia hết cho 30
=> ĐPCM
S=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9+5^10
=>S=(5+5^2)+(5^3+5^4)+(5^5+5^6)+(5^7+5^8)+(5^9+5^10)
=>S=30+5^2(5+5^2)+5^4(5+5^2)+5^6(5+5^2)+5^8(5+5^2)
=>S=30+5^2.30+5^4.30+5^6.30+5^8.30
=>S=30(1+5^2+5^4+5^6+5^8)=> S chia hết cho 30
\(5+5^2+5^3+5^4+5^5+...+5^9+5^{10}\)
\(=5+5^2+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^8\left(5+5^2\right)\)
\(=\left(5+5^2\right)\left(1+5^2+5^4+5^6+5^8\right)\)
\(=30.\left(1+5^2+5^4+5^6+5^8\right)\)
vậy S chia hết cho 30
ko hiểu họi lại mik
tick mik nka
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
S=(5+52)+(53+54)+....+(52017+52018)
= 30+52(5+52)+....+52016(5+52)
=30+30.52+....+30.52016
vì từng số hạng của S chia hết cho 30 nên S chia hết cho 30
S = 5 + 52 + 53 + 54 + .......... + 599
a) S = ( 5 + 52 + 53 ) + ( 54 + 55 + 56 ) + .... + ( 597 + 598 + 599 )
= 5. ( 1 + 5 + 52 ) + 54 . ( 1 + 5 + 52 ) + .... + 597 . ( 1 + 5 + 52 )
= ( 1 + 5 + 52 ). ( 5 + 54 + .. + 597 )
= 31 . ( 5 + 54 + .... + 597 ) chia hết cho 31 ( đpcm )
c ) 5S = 52 + 53 + .. + 5100
=> 5S - S = 4S = 5100 + 599 + ........ + 53 + 52 - 5 - 52 - 53 - ..... - 599
= 5100 - 5
25x - 5 = 4S
=> 25x - 5 = 5100 - 5
=> 25x = 5100
=> 25x = ( 52 )50
=> 25x = 2550
=> x = 50
Vậy x = 50
Câu b quên cách làm rồi
a) S=5+52+53+54+...+599
=(5+52+53)+(54+55+56)+...+(597+598+599)
=5(1+5+52)+54(1+5+52)+...+597(1+5+52)
=5.31+54.31+...+597.31
=31(5+54+...+597)⋮31(đpcm)
b) S=5+52+53+54+...+599
=5+(52+53)+(54+55)+...+(598+599)
=5+5(5+52)+53(5+52)+...+597(5+52)
=5+5.30+53.30+...+597.30
=5+30.(5+53+...+597)
Mà 5⋮̸30 nên S⋮̸30(đpcm)
c) Ta có: 5S=52+53+54+55+...+5100
5S−S=(52+53+54+55+...+5100)−(5+52+53+54+...+599)
4S=5100−5
⇒25x−5=5100−5
⇒25x=5100
⇒25x=2550
⇒x=50
a) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow5S=5^2+5^3+5^4+...+5^{101}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(\Rightarrow4S=5^{101}-5\)
\(\Rightarrow S=\frac{5^{101}-5}{4}\)
b) \(4S+5=5^x\)
\(\Rightarrow5^{101}-5+5=5^x\)
\(\Rightarrow5^{101}=5^x\)
\(\Rightarrow x=101\)
Vậy x = 101
c) \(S=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow S=\left(5+25\right)+5^2.\left(5+5^2\right)+...+5^{98}.\left(5+5^2\right)\)
\(\Rightarrow S=30+5^2.30+...+5^{98}.30\)
\(\Rightarrow S=\left(1+5^2+...+5^{98}\right).30⋮30\)
\(\Rightarrow S⋮30\left(đpcm\right)\)
Cho 2 dễ rồi bạn tự làm nhé
Cho 5
2 + 2^2 + .... + 2^ 30
(2 + 2^3 ) + ( 2^ 2 + 2^ 4) + ..... = ( 2^28 + 2^30 )
2( 1 + 4 ) + 2^2 ( 1 + 4 ) +...... + 2^28 ( 1+ 4 )
2. 5 + ..... + 2^ 28 . 5
5( 2 + >.. + 2^ 28 ) chia hết cho 5
S = (5+5^2)+(5^3+5^4)+....+(5^9+5^10)
= 1.30+5^2.30+...+5^8.30
=30.(1+5^2+...+5^8)
=> chia hết cho 30
=> ĐPCM
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Mới làm xong