Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
ta có 1/2.3 <1/22 <1/1.2
1/3.4 < 1/32 <1/2.3
.....................................
1/9.10 < 1/92 <1/8.9
suy ra : 1/2.3+1/3.4+...+ 1/9.10 < S < 1/1.2+1/2.3+......+ 1/8.9
suy ra: 1/2- 1/3+ 1/3- 1/4+...+1/9-1/10 <S< 1-1/2+ 1/2- 1/3+...........+1/8-1/9
ta bù trừ cho nhau thì sẽ ra:
1/2 - 1/10 < S < 1- 1/9
suy ra 2/5 < S < 8/9
Vậy 2/5 < S <8/9
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12
4S = 4/(5x5) + 4/(9x9) + … + 1/(409x409)
Ta thấy:
4/(5x5) < 4/(3x7) = 1/3 – 1/7
4/(9x9) < 4/(7x11) = 1/7 – 1/11
…………
4/(409x409) < 4/(407x411) = 1/407 – 1/411
Mà :
4/(3x7) + 4/(7x11) + …. + 4/(407x411) = 1/3 – 1/411 = 136/411
4S < 136/411
S < 34/411 < 34/408 = 1/12
Hay S < 1/12