Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐKXĐ:x-1\ge0\Leftrightarrow x\ge1\)
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^3+b^2=2-x+x-1=1\)
Lại có: \(a=1-b\)
Thay vào được
\(\left(1-b\right)^3+b^2=1\)
\(\Leftrightarrow1-3b+3b^2-b^3+b^2-1=0\)
\(\Leftrightarrow-b^3+4b^2-3b=0\)
\(\Leftrightarrow b^3-4b^2+3b=0\)
\(\Leftrightarrow b\left(b^2-4b+3\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b-3\right)=0\)
\(\Leftrightarrow b=0\left(h\right)b=1\left(h\right)b=3\)(T/m ĐK b>0)
*Với b = 0
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\left(TmĐKXĐ\right)\)
*Với b = 1
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
*Với b = 3
\(\Leftrightarrow\sqrt{x-1}=3\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy \(S\in\left\{1;2;10\right\}\)
em chỉ bt bài 2 nha!
\(A=\left(1-\frac{2}{2\cdot3}\right)\left(1-\frac{2}{3\cdot4}\right)...\left(1-\frac{2}{2020\cdot2021}\right)\)
\(\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}\cdot...\cdot\frac{2020\cdot2021-2}{2020\cdot2021}\left(1\right)\)
Mặt khác:\(2020\cdot2021-2=2020\left(2022-1\right)+2020-2022\)
\(=2020\cdot2022-2022\)
\(=2022\left(2020-1\right)=2019\cdot2022\left(2\right)\)
Từ (1),(2) ta có:
\(A=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot...\cdot\frac{2022\cdot2019}{2020\cdot2021}\)
\(=\frac{\left(4\cdot5\cdot6\cdot...\cdot2022\right)\left(1\cdot2\cdot3\cdot...\cdot2019\right)}{\left(2\cdot3\cdot4\cdot...\cdot2020\right)\left(3\cdot4\cdot5\cdot...\cdot2021\right)}\)
\(=\frac{2021\cdot2022}{2\cdot3}\cdot\frac{1\cdot2}{2020\cdot2021}=\frac{2022}{3\cdot2020}=\frac{2022}{6060}\)
\(\frac{x+1}{x-1}=\frac{7}{3}\)
=> \(3.\left(x+1\right)=7.\left(x-1\right)\)
=> \(3x+3=7x-7\)
=> \(3x+10=7x\)
=> \(4x=10\)
=> \(x=\frac{10}{4}=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)
a/ ĐKXĐ: $x\leq 2$
Áp dụng BĐT AM-GM:
$\sqrt{2-x}\leq (2-x)+\frac{1}{4}=\frac{9}{4}-x$
$\Rightarrow B=x+\sqrt{2-x}\leq x+\frac{9}{4}-x=\frac{9}{4}$
Vậy $B_{\max}=\frac{9}{4}$
Giá trị này đạt tại $2-x=\frac{1}{4}\Leftrightarrow x=\frac{7}{4}$
b/ ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow \sqrt{2x+3}=16-x$
$\Rightarrow 2x+3=(16-x)^2=x^2-32x+256$
$\Leftrightarrow x^2-34x+253=0$
$\Leftrightarrow (x-23)(x-11)=0$
$\Rightarrow x=23$ hoặc $x=11$
Thử lại thấy $x=11$ thỏa mãn
Vậy tập nghiệm của phương trình là $\left\{11\right\}$
Gọi đọ dài 2 cạnh góc vuông là a và b => Độ dài cạnh huyền là \(\sqrt{a^2+b^2}\)
Gọi đường cao là h.
=> Chu vi tam giác là: \(a+b+\sqrt{a^2+b^2}\)
Diện tích tam giác là: \(\frac{1}{2}.\sqrt{a^2+b^2}.h\)
Theo bài ra ta có: \(a+b+\sqrt{a^2+b^2}=\frac{1}{2}.\sqrt{a^2+b^2}.h\)
=> \(h=\frac{2a+2b+2\sqrt{a^2+b^2}}{\sqrt{a^2+b^2}}=2+2.\frac{a+b}{\sqrt{a^2+b^2}}\)
Theo BĐT Bunhiacopxki có: \(\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
<=> \(a+b\le\sqrt{2\left(a^2+b^2\right)}\)
=> \(h\le2+2.\frac{\sqrt{2\left(a^2+b^2\right)}}{\sqrt{a^2+b^2}}=2+2\sqrt{2}\)
=> Giá trị lớn nhất của chiều cao thỏa mãn đk là: \(h_{max}=2+2\sqrt{2}\)