Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
a)\(\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{x}-\frac{1}{x+3}\right)\)=\(\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
=\(\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}\)=\(\frac{101}{1540}:\frac{1}{3}\)=\(\frac{303}{1540}\)
\(\frac{1}{x+3}\)=\(\frac{1}{5}-\frac{303}{1540}\)=\(\frac{1}{308}\)
\(\Rightarrow\)x+3=308
\(\Rightarrow\)x=308-3=305
b)Mk chưa nghĩ ra
b) \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{x+1-6}{6\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{x-5}{6x+6}=\frac{1}{9}\)
\(\Rightarrow9x-45=6x+6\)
\(\Rightarrow3x=51\)
\(\Rightarrow x=17\)
Vậy x = 17
a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)
\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)
\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)
\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)
b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)
c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)
\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)
\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)
\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)
e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)
\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)
g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)
\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)
\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)
a) \(\frac{4.7}{9.32}\)=\(\frac{28}{288}\)=\(\frac{7}{72}\)
b)\(\frac{3.21}{14.15}\)=\(\frac{63}{210}\)=\(\frac{3}{10}\)
c)\(\frac{2.5.13}{26.35}\)=\(\frac{130}{910}\)=\(\frac{1}{7}\)
d)\(\frac{9.6-9.3}{18}\)=\(\frac{27}{18}\)=\(\frac{3}{2}\)
e)\(\frac{17.5-17}{3-20}\)=\(\frac{68}{-17}\)=\(-4\)
f)\(\frac{49+7.49}{49}\)=\(\frac{392}{49}\)=\(8\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
Câu 1 : \(1,321338308x10^{-4}\)
Câu 2 : \(1316,572106\)
Câu 3 : \(1,641302619x10^{-13}\)
Ủng hộ nhé,tớ đang âm.
Đề là cm S>1 nha bạn!
\(S=\frac{9}{2.5}+\frac{9}{5.8}+...+\frac{9}{29.32}\)
\(=3\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(=3.\frac{15}{32}\)
\(=\frac{45}{32}>1\)
\(\Leftrightarrow S>1\)
\(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}\)
Cách 1 : Vì hiệu hai thừa số đều là 3 = 5 - 2 = 8 - 5 = ... = 32 - 29 nên phân tích tử 9 = 3 . 3
Ta có : \(S=3\left[\frac{3}{2\cdot5}+\frac{3}{7\cdot9}+...+\frac{3}{29\cdot32}\right]=3\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{29}-\frac{1}{32}\right]\)
\(=3\left[\frac{1}{2}-\frac{1}{32}\right]=3\left[\frac{16}{32}-\frac{1}{32}\right]=3\cdot\frac{15}{32}=\frac{45}{32}\)
Mà \(\frac{45}{32}>1\)=> S không thể bé hơn 1
Cách 2 : Nhận xét : \(\frac{9}{2\cdot5}=\frac{3}{2}-\frac{3}{5};\frac{9}{5\cdot8}=\frac{3}{5}-\frac{3}{8};...\)
Vậy ta có : \(S=\frac{9}{2\cdot5}+\frac{9}{5\cdot8}+\frac{9}{8\cdot11}+...+\frac{9}{29\cdot32}=\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+...+\frac{3}{29}-\frac{3}{32}\)
\(=\frac{3}{2}-\frac{3}{32}=\frac{3\cdot16}{32}-\frac{3}{32}=\frac{48}{32}-\frac{3}{32}=\frac{45}{32}\)
Tự so sánh , mà S đâu bé hơn 1 ???