K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

6S=6-1+1/6-1/6^2+...+1/6^2015-1/6^2016

7S=(6-1+1/6-1/6^2+...+1/6^2015-1/6^2016)+(1-1/6+1/6^2-1/6^3+...+1/6^2016-1/6^2017)

CỘNG VẾ THEO VẾ 

TA ĐƯỢC:

7S=6-1/6^2017

SUY RA 

S=6/7-1/6^2017.7<6/7

SUY RA S<S/7

19 tháng 4 2019

A = 1/2.3/4.....2015/2016

= 1.3.5.....2015/2.4.6......2016

= 1.3.5.....2015/(1.2).(2.2).....(2.1008)

= 1.3.5.....2015/2^1008 . 1.2....1008

14 tháng 4 2019

c)  \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\) 

\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\) 

\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)

\(=2\left(1-\frac{1}{16}\right)\) 

\(=2.\frac{15}{16}\) 

\(=\frac{15}{8}\) 

Vậy A=\(\frac{15}{8}\)

14 tháng 4 2019

a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)

\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=3.\frac{99}{100}=\frac{297}{100}\)

17 tháng 4 2017

Dài thế bạn

18 tháng 4 2017

bạn trả lời được 1 bài cũng đc

25 tháng 2 2018

Ta có : 

\(S=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\)

\(\Leftrightarrow\)\(3S=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)

\(\Leftrightarrow\)\(3S-S=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^9}\right)\)

\(\Leftrightarrow\)\(2S=\frac{1}{3}-\frac{1}{3^9}\)

\(\Leftrightarrow\)\(2S=\frac{3^8-1}{3^9}\)

\(\Leftrightarrow\)\(S=\frac{3^8-1}{2.3^9}\)

Ở đây mk chỉ ghi \(...\) cho nhanh nếu bạn làm vào vở thì ghi đầy đủ ra nhé 

30 tháng 4 2019

bạn còn on ko

28 tháng 2 2018

\(=\frac{12}{7}\cdot\frac{3}{4}-\frac{6}{7}\cdot\frac{4}{3}+\frac{6}{7}\)

\(=\frac{6}{7}\left(\frac{3}{2}-\frac{4}{3}+1\right)\)

\(=\frac{6}{7}\left(\frac{1}{6}+1\right)=\frac{6}{7}\cdot\frac{7}{6}=1\)

2.

\(=2017\cdot2018\cdot\left[\left(2016\cdot2018\right)-\left(2016\cdot2017\right)\right]\)

\(=2017\cdot2018\cdot2016\left(2018-2017\right)=2016\cdot2017\cdot2018\)

3.

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{100}-1\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

4.

\(=\frac{1+2+2^2+2^4+...+2^9}{2\left(1+2+2^2+2^3+2^4+...+2^9\right)}\)

\(=\frac{1}{2}\)

28 tháng 2 2018

mình chỉ làm được câu 3 thôi

có \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)....\left(\frac{1}{100}-1\right)\)

\(=\frac{-1}{2}\times\frac{-2}{3}\times....\times\frac{-99}{100}\)

\(=\frac{\left(-1\right)\left(-2\right)....\left(-99\right)}{2\times3\times....\times100}\)

\(=\frac{-\left(1\times2\times....\times99\right)}{2\times3\times....\times100}\)

\(=\frac{-1}{100}\)

23 tháng 6 2017

1. Bài giải:

Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\)

\(\Rightarrow\frac{1}{2}A=A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1000}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1002}\right)\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{1002}=\frac{1001}{1002}\Rightarrow A=\frac{2002}{1002}=\frac{1001}{501}\)

Vậy \(A=\frac{1001}{501}\)

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

8 tháng 5 2019

Cộng các tổng ở các mẫu số được:    \(S=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}.\) 

       \(\Leftrightarrow S=1+\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{6}+\frac{1}{10}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{21}+\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{36}.\) 

        Thực hiện các phép nhân một số với một hiệu ,được:

            \(S=1+\frac{1}{2}-\frac{1}{6}+\frac{1}{6}+\frac{1}{10}+\frac{1}{6}-\frac{1}{15}+\frac{1}{21}+\frac{1}{12}-\frac{1}{21}+\frac{1}{36}.\) 

         Giản ước, làm gọn được :   \(S=(1+\frac{1}{2})+(\frac{1}{10}+\frac{1}{6}-\frac{1}{15})+(\frac{1}{12}+\frac{1}{36}).\) 

            \(\Leftrightarrow S=\frac{3}{2}+\frac{1}{5}+\frac{1}{9}=\frac{135+18+10}{90}=\frac{163}{90}.\)