Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).
Đăng từ bài thôi bạn à!
a) Áp dụng công thức: \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}< \frac{1}{3}-\frac{1}{4}\)
..............................
\(\frac{1}{n^2}< \frac{1}{n-1}-\frac{1}{n}\)
___________________________________________
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}=\frac{1}{n+1}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\) (đpcm)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Ta có : \(S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\) (1)
Ta lại có : \(S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow S< 1-\frac{1}{9}=\frac{8}{9}\)
Từ (1) và (2) \(\Rightarrow\frac{2}{5}< S< \frac{8}{9}\) ( đpcm )
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình