\(\frac{1}{2}\) + \(\frac{1}{3}\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có: \(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

\(\Rightarrow P=\left(1+\frac{1}{49}\right)+\left(1+\frac{2}{48}\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+1\)

\(\Rightarrow P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(\Rightarrow P=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}}{50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)}=\frac{1}{50}\)

Vậy \(\frac{S}{P}=\frac{1}{50}\)

16 tháng 3 2018

p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)

=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)

=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

p=50*S

\(\frac{S}{\text{p}}=\frac{1}{50}\)

20 tháng 4 2018

s=1,p=50

15 tháng 3 2017

Ta có: P = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{49}{1}\)

\(=\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{1}{49}\)

\(=\frac{50-1}{1}+\frac{50-2}{2}+\frac{50-3}{3}+...+\frac{50-49}{49}\)

\(=\frac{50}{1}-\frac{1}{1}+\frac{50}{2}-\frac{2}{2}+\frac{50}{3}-\frac{3}{3}+...+\frac{50}{49}-\frac{49}{49}\)

\(=\left(\frac{50}{1}+\frac{50}{2}+\frac{50}{3}+...+\frac{50}{49}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{49}{49}\right)\)

\(=50+50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)-49\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)+1\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}\right)+\frac{50}{50}\)

\(=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}}{50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)}=\frac{1}{50}\)

12 tháng 7 2020

Bạn tham khảo Câu hỏi của Đoàn Phạm Hùng 

7 tháng 4 2016

Ta có:\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+....+\frac{48}{2}+\frac{49}{1}+50-50\)

               \(=\left(1+\frac{1}{49}\right)+\left(1+\frac{2}{48}\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\left(1+\frac{49}{2}\right)-50\)

              \(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+....+\frac{50}{2}+\frac{50}{1}-50\)

              \(=50\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+....+\frac{1}{2}\right)+50-50\)

              \(=50\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+....+\frac{1}{2}\right)\)

mà  \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}\)

\(=>\frac{S}{P}=\frac{1}{50}\)

Vậy \(\frac{S}{P}=\frac{1}{50}\)              

              

              

29 tháng 8 2017

ê viết kiểu j z

k cho t ik

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72