Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(\Rightarrow9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\Rightarrow S=\frac{3^{2004}-1}{8}\)
b, Xét dãy số mũ : 0;2;4;6;...;2002
Số số hạng của dãy số trên là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số )
Ta ghép được số nhóm là :
1002 : 3 = 334 ( nhóm )
Ta có : \(S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(S=\left(3^0+3^2+3^4\right)+3^6\left(3^0+3^2+3^4\right)+...+3^{1998}\left(3^0+3^2+3^4\right)\)
\(S=1.91+3^6.91+...+3^{1998}.91=\left(1+3^6+...+3^{1998}\right).91\)
Vì : \(91⋮7;1+3^6+...+3^{1998}\in N\Rightarrow S⋮7\) (đpcm)
b) S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
a) S=30+32+34+...+32002
\(\Rightarrow\)9S=32+34+36+...+32004
\(\Rightarrow\)9S-S=(32+34+36+...+32004)-(1+32+34+...+32002)
8S=32004-1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
b) Ta có : S=1+32+34+...+32002
=(1+32+34)+(36+38+310)+...+(31998+32000+32002)
=1(1+32+34)+36(1+32+34)+...+31998(1+32+34)
=1.91+36.91+...+31998.91
Mà 91\(⋮\)7 nên 1.91+36.91+...+31998.91\(⋮\)7
\(\Rightarrow S⋮7\)(đpcm)
a) S=30+32+34+36+.....+32002
=>32S=32+34+36+.....+32002+32004
=>9S-S=(32+34+36+.....+32002+32004)-(30+32+34+36+.....+32002)
=>8S=32004 - 1
=>S=(32004 - 1) / 8
b) S= 30+32+34+36+.....+32002
S=(30+32+34)+(36+38+310)+.....+(31998+32000+32002)
S=91+36(30+32+34)+.....+31998(30+32+34)
S=91.1+36.91+....+31998.91
S=91(1+36+....+31998) chia hết cho 7
=>S chia hết cho 7
Câu a mk ko chắc làm đúng ko nữa
3S=3+3^2+........+3^2003
Xong rồi lấy 3S-S rút gọn đi!!!!!!
Cậu tự giải nha mk giải dài dòng lắm
a) Nhân S với 32 bằng S nhân với 9 ta được : 9S
9S = 32 + 34 + 36 + ... + 32002 + 32004
\(\Rightarrow\)9S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 30 + 32 + 36 + ... + 32002 )
\(\Rightarrow\)8S = 32004 - 1
\(\Rightarrow\)S = \(\frac{\left(3^{2004}-1\right)}{8}\)
b) Ta có s là số nguyên nê phài chứng minh 32004 - 1 chia hết cho 7
Ta có : 32004 - 1 = ( 36 )334 - 1 = ( 36 ) . M = 728 . M = 7 . 104 . M
\(\Rightarrow\)32004 chia hết cho 7. Mặt khác ( 7;8 ) = 1
\(\Rightarrow\)S chia hết cho 7
a, 9S = 3^2+3^4+....+3^2004
8S=9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+3^4+....+3^2002) = 3^2004-3^0 = 3^2004-1
=> S = (3^2004-1)/8
b, S = (3^0+3^2+3^4)+(3^6+3^8+3^10)+....+(3^1998+3^2000+3^2002)
= 91+3^6.(1+3^2+3^4)+....+3^1998.(1+3^2+3^4)
= 91+3^6.91+....+3^1998.91
= 91.(1+3^6+....+3^1998) chia hết cho 91
Mà 91 chia hết cho 7 => S chia hết cho 7
k mk nha
đầu tiên tính s bạn gáp s lên 3 lên
RỒI BẠN TRỪ HAI VẾ CHO NHAU RỒI CHIA CHO BẠN HIÊU KHÔNG
PHẦN B BẠN NHÓM 3 SỐ VÀO VỚI NHAU TAO RA MỘT TỔNG CHIA HẾT CHO 7 VÀ VÌ SỐ SỐ HANG LA SỐ CHIA HẾT CHO 3 NÊN S CHIA HẾT CHO 7\
Bài làm
a) S = \(3^0\)+ \(3^2\)+ \(3^4\)+ ......+ \(3^{2002}\)
\(3^2\)S = \(3^2\) + \(3^4\)+ \(3^6\)+ ..... + \(3^{2004}\)
\(3^2\)S - S = \(3^{2004}\) - \(3^0\)
9 . S - S = \(3^{2004}\) - \(3^0\)
8 . S = \(3^{2004}\) - \(3^0\)
S = \(\frac{3^{2004}-3^0}{8}\)
a. S = 30 + 32 + 34 + ... + 32002
32S = 32( 30 + 32 + 34 + ... + 32002 )
9S = 32 + 34 + 36... + 32004
9S - S = (32 + 34 + 36... + 32004 ) - ( 30 + 32 + 34 + ... + 32002)
8S = 32004 - 1
S = (32004 - 1) : 8
b. Có S = 30 + 32 + 34 + ... + 32002 có 1002 số hạng
= ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 ) có 334 nhóm.
= 91 + 36 (30 + 32 + 34 ) + ... + 31998( 30 + 32 + 34 )
= 91 + 36 . 91 + ... + 31998 . 91
=91 ( 1 + 36 + ... + 31998 ) = 7 . 13 . ( 1 + 36 + ... + 31998 )
Vì ( 1 + 36 + ... + 31998 ) \(\in\)N
\(\Rightarrow\)7 . 13 . ( 1 + 36 + ... + 31998 ) \(⋮\)7
Hay S \(⋮\)7 ( đpcm )