K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

\(S=\frac{3^{64}-3}{2}\)

\(\Rightarrow2S+3=2.\frac{3^{64}-3}{2}+3=3^{64}-3+3=3^{64}\)

Do đó 2S + 3 là một lũy thừa

S=3+32+33+...+363

=>3S=32+33+34+...+364

=>3S-S=(32+33+34+...+64)-(3+32+33+...+363)

=>2S=364-3

=>2S+3=364-3+3=364

=>đpcm

2 tháng 1 2019

\(B=3+3^2+3^3+3^4+...+3^{2018}\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{2019}\)

\(\Rightarrow2B=3^{2019}-3\)

\(\Rightarrow2B+3=3^{2019}-3+3\)

\(\Rightarrow2B+3=3^{2019}\left(đpcm\right)\)

29 tháng 11 2018

a)

    \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)

\(S=3\cdot12+3^2\cdot12+...+3^{2014}\cdot12=12\cdot\left(3+3^2+...+3^{2014}\right)⋮4\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)

\(S=3\cdot13+3^4\cdot13+...+3^{2014}\cdot13=13\cdot\left(3+3^4+...+3^{2014}\right)⋮13\)

b)

Tính S:

\(3S-S=\left(3^2+3^3+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)

\(2S=3^{2017}-3\) suy ra \(2S+3=3^{2017}\) là 1 lũy thừa của 3.

c)

  Ta có \(S=\frac{3^{2017}-3}{2}\)

\(3^{2017}=\left(3^4\right)^{504}\cdot3=81^{504}\cdot3\)có tận cùng là 3.(Tự hiểu nha em)

Do đó \(3^{2017}-3\)tận cùng là 0 nên S có tận cùng là 0

9 tháng 6 2019

\(S=3+3^2+3^3+3^4+...+3^{2016}\)

\(3S=3^2+3^3+3^4+3^5+....+3^{2017}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2017}-3\)

\(S=\frac{3^{2017}-3}{2}\)

Vậy 2S + 3 = \(\left(\frac{3^{2017}-3}{2}\right).2+3\)\(=3^{2017}-3+3=3^{2017}\)

Vậy 2S + 3 là một lũy thừa của 3 (đpcm) 

25 tháng 12 2015

 4= 30+31(làm ra nháp)

S= 3+32+33+...+3100

S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)

S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)

S=3x4+3^3x4+3^5x4+...+3^99x4

S=4x(3+3^3+3^5+...+3^99)

=> S chia hết cho 4.

 

 

22 tháng 3 2021

Đặt Tên Chi

Tìm kiếm

Báo cáo

Đánh dấu

24 tháng 12 2015 lúc 20:28

Cho S=3+32+33+........+3100

a, Chứng minh rằng S chia hết cho 4.

b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3

Toán lớp 6

4 tháng 12 2017

S =1+3+32+33+…+399

3S =3+32+33+…+3100

3S-S=3100-1

2S=3100-1

2S+1=3100

Chứng tỏ 2S +1  là luỹ thừa của 3

13 tháng 11 2016

 S = 3 + 3+ 3+ ... + 3100

=> 3S =  3+ 3+ ... + 3100+3101

=> 2S = 3101 - 3

=> 2S + 3 = 3101 + 3 - 3  = 3101

=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)

Cho Mình Tích Nha

13 tháng 11 2016

 S = 3 + 3+ 3+ ... + 3100

=> 3S =  3+ 3+ ... + 3100+3101

=> 2S = 3101 - 3

=> 2S + 3 = 3101 + 3 - 3  = 3101

=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)

19 tháng 6 2016

A=3+32+34+......+399+3100

=>3A= 32+34+......+399+3100+3101

-A=3+32+34+......+399+3100

=>2A=3101-3

=>2A+3=3101

=>2A+3 là 1 lũy thừa của 3.(đpcm)

19 tháng 6 2016

A = 3 + 32 + 33 + ... + 399 + 3100

3A = 32 + 33 + 34 + ... + 3100 + 3101

3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)

2A = 3101 - 3

=> 2A + 3 = 3101

=> đpcm

24 tháng 7 2021

o biết
 

1 tháng 12 2016

a,2n+3chia het cho n+1

n+1 chia het cho n+1 

=>[2n+3]-2[n+1]=2n-3-2n-1=2chia het cho n+1

=>n+1  bé hơn hoặc bằng 1

=>n+1 thuộc ước cuả 2

=>n+1 thuoc 1;2

nên n=0;1

Vậy n=0;1