K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

Ta có: \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)\)

\(=3.\left(1+3\right)+3^3.\left(1+3\right)+3^5.\left(1+3\right)\)

\(=3.4+3^3.4+3^5.4\)

\(=4.\left(3+3^3+3^5\right)\) chia hết cho 4

=> S chia hết cho 4 (đpcm).

13 tháng 12 2015

Ghép 2 số lại     

30 tháng 12 2015

S = 3 + 32 + 33 + 34 + 35 + 36

   = (3 + 32) + (33 + 34) + (35 + 36)

   = 3(1+ 3) + 33(1 + 3) + 35(1 + 3)

   = 3 . 4 + 33 . 4 + 35 . 4

   = (3 + 33 + 35) . 4

Vì 4 chia hết cho 4 => (3 + 33 + 35) . 4 chia hết cho 4

Vậy S chia hết cho 4

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

27 tháng 9 2015

a) Nhân S với 32 bằng S nhân với 9 ta được : 9S

9S = 32 + 3+ 36 + ... + 32002 +  32004

\(\Rightarrow\)9S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 3+ 32 + 36 + ... + 32002 )

\(\Rightarrow\)8S = 32004 - 1

\(\Rightarrow\)S = \(\frac{\left(3^{2004}-1\right)}{8}\)

b) Ta có s là số nguyên nê phài chứng minh 32004 - 1 chia hết cho 7

Ta có : 32004 - 1 = ( 36 )334 - 1 = ( 36 ) . M = 728 . M = 7 . 104 . M

\(\Rightarrow\)32004 chia hết cho 7. Mặt khác ( 7;8 ) = 1

 \(\Rightarrow\)S chia hết cho 7

 

 

 

18 tháng 12 2015

Chọn mình nhé:
1+2+22+23+24+25+26+27
=(1+2)+(22+23)+(24+25)+(26+27)
=3+2(1+2)+...+26(1+2)
=3+2.3+...+26.3
Ta thấy mỗi thừa số đều chia hết cho 3 nên S chia hết cho 3

12 tháng 12 2019

S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7

S = (1+2) + (2^2 + 2^3) + (2^4 + 2^5) + (2^6 + 2^7)

S = (1+2) + 2^2 (1+2) + 2^4 (1+2) + 2^6 (1+2)

S = 3*1 + 2^2 * 3 + 2^4 * 3 + 2^6 * 3

S = 3 * (1 + 2^2 + 2^4 + 2^6)

Vì 3 ⁝ 3

nên 3 * (1 + 2^2 + 2^4 + 2^6) ⁝ 3

Vậy S ⁝ 3

13 tháng 12 2019

S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27

S = (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)

S = 1(1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)

S = (1 . 3) + (22 . 3) + (24 . 3) + (26 . 3)

S = 3 . (1 + 22 + 24 + 26) ⋮ 3

S ⋮ 3

17 tháng 3 2020

...

S = 1+2+22+ ... +26+27

S = (1+2) + (22+23) + ... + (26+27)

S = 3.1 + 22(1+2) + ... + 26(1+2)

S = 3.1 + 22 . 3 + ... + 26 . 3

S = 3(1+22+ ... +26)

Vì trong S có thừa số 3 chia hết cho 3

=> S chia hết cho 3

       CHÚC BẠN HỌC TỐT !

30 tháng 6 2016

S = (1 + 3) + (32+33)+.....+(398+399)

  = 4 + 32 .(1 + 3) + .....+398.(1+3)

 = 1 .4 + 32.4 + ..... +398.4

= 4.(1 + 32 + .... +398) chia hết cho 4

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002