K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

a, ghép cặp 2 số một sẽ ra 

b , làm tương tự câu a nhưng ghép cặp 3 số một

c

s​​​​​ chia hết cho 2

s cũng chia hết cho 5

suy ra s chia hết cho cả 2 và 5 

vậy số tận cùng của s là 0

4 tháng 8 2015

a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6 

b) Tương tự a 

c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0 

Nhớ ticks đúng cho mình nhé

 

 

4 tháng 8 2015

a) S = 2 + 22 + 23 + 24 + .... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )

= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )

= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )

= 6 + 22 . 6 + .... + 298 . 6

= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )

18 tháng 9 2016

a) S= 2 + 22 + 23 +...+ 2100

S= ( 2+2) + ( 23+2) +...+( 299 + 2100 )

S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)

S=6+ 22.6+ ...+ 298.6

S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15 

 

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

24 tháng 7 2021

o biết
 

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

Bài 1: a) Thay * bằng các chữ số nào để đc số 589* chia hết cho cả 2 và 3b) Thay * bằng các chữ số nào để đc số 792* chia hết cho cả 3 và 5Bài 2: Cho A = 10 + 25 + x + 45 với x ∈ N. Tìm điều kiện của x để A chia hết cho 5 và A không chia hết cho 5Bài 3: 1) Cho S = 5 + 52 + 53 + ........... + 52006.a) Tính Sb) Chứng minh S chia hết cho 262) Cho C = 3 + 32 + 33 + ........... + 3100. Chứng minh C chia hết cho...
Đọc tiếp

Bài 1: 

a) Thay * bằng các chữ số nào để đc số 589* chia hết cho cả 2 và 3

b) Thay * bằng các chữ số nào để đc số 792* chia hết cho cả 3 và 5

Bài 2: Cho A = 10 + 25 + x + 45 với x  N. Tìm điều kiện của x để A chia hết cho 5 và A không chia hết cho 5

Bài 3: 1) Cho S = 5 + 5+ 53 + ........... + 52006.

a) Tính S

b) Chứng minh S chia hết cho 26

2) Cho C = 3 + 3+ 33 + ........... + 3100. Chứng minh C chia hết cho 40

3) Cho A = 2 + 2+ 23 + ........... + 260. Chứng minh C chia hết cho 7

Bài 4: Xét xem:

a) 20022003 + 20032004  có chia hết cho 2 không?

b) 34n - 6 có chia hết cho 5 không? ( n ∈‍ N* )

c) 20012002 - 1 có chia hết cho 10 không?


Ai giải rõ ràng mình tick!!

Giải bài nào cũng đc nha!!

Bài 1 nhớ bày cách giải dùm nha! thanks ( biết kết quả mà chả biết cách làm )

0