Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]$
$=[1.2.3.4+2.3.4.5+3.4.5.6+...k(k+1)(k+2)(k+3)]-[0.1.2.3+1.2.3.4+2.3.4.5+....+(k-1)k(k+1)(k+2)]$
$=k(k+1)(k+2)(k+3)$
$\Rightarrow 4S+1=k(k+1)(k+2)(k+3)+1=[k(k+3)][(k+1)(k+2)]+1$
$=(k^2+3k)(k^2+3k+2)+1=(k^2+3k)^2+2(k^2+3k)+1=(k^2+3k+1)^2$
$\Rightarrow 4S+1$ là số chính phương.
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + . . . + k(k+1)(k+2)
Chứng minh rằng 4S + 1 là số chính phương .
Ta có k(k+1)(k+2) = 41 k(k+1)(k+2).4
= 41 k(k+1)(k+2).[(k+3) – (k-1)]
= 41 k(k+1)(k+2)(k+3) - 41 k(k+1)(k+2)(k-1)
⇒S =41.1.2.3.4 -41.0.1.2.3 + 41.2.3.4.5 -41.1.2.3.4 +…+41 k(k+1)(k+2)(k+3) -41 k(k+1)(k+2)(k-1)
= 41 k(k+1)(k+2)(k+3)4S + 1
= k(k+1)(k+2)(k+3) + 1Theo kết quả bài 2
⇒ k(k+1)(k+2)(k+3) + 1 là số chính phương.
\(4S=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot4\)
= \(1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+...+k\cdot\left(k+1\right)\cdot\left(k+2\right)\cdot\left[\left(k+3\right)-\left(k-1\right)\right]\)= 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + k*(k+1)*(k+2)*(k+3) - (k-1)*k*(k+1)*(k+2)
=k*(k+1)*(k+2)*(k+3)
4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4=
=1.2.3.4+2.3.4(5-1)+3.4.5.(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]=
=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-(k-1)k(k+1)(k+2)+k(k+1)(k+2)(k+3)=
=k(k+1)(k+2)(k+3)=k(k+3)(k+1)(k+2)=
=(k2+3k)(k2+3k+2)=(k2+3k)2+2(k2+3k)
=> 4S+1=(k2+3k)2+2(k2+3k)+1=[(k2+3k)+1]2
Ta có : S = 1.2.3 + 2.3.4 + 3.4.5 + ..... + k(k + 1)(k + 2)
=> 4S = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 - 2.3.4.5 + .... + k(k + 1)(k + 2)(k + 3)
= k(k + 1)(k + 2)(k + 3)
= (k2 + 3k)(k2 + 3k + 2)
Nên :4S + 1 = (k2 + 3k)(k2 + 3k + 2) + 1
Đặt k2 + 3k = t
Ta có : 4S + 1 = t(t + 2) + 1
= t2 + 2t + 1
= (t + 1)2
Vì k thuộc N nên : k2 + 3k thuôc N <=> t + 1 = k2 + 3k + 1 thuôc N
Vậy 4S + 1 là bình phương của 1 số tự nhiên
Ta có : C = |x-2016|+|x-2015|
=> C = |2016-x|+|x-2015|
Áp dụng công thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)(Với a;b \(\in Z\))
\(\Rightarrow C\ge\left|2016-x+x-2015\right|=1\)
Vậy dấu "=" xảy ra khi :
\(\orbr{\begin{cases}x\le2016\\x\ge2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2016\\2015\end{cases}}\)
Vậy với x = 2016 hoặc x = 2015 thì C đạt GTNN = 1
Ta có :
\(S=1.2.3+2.3.4+3.4.5+...+k\left(k+1\right)\left(k+2\right)\)
\(4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k\left(k+1\right)\left(k+2\right).4\)
\(4S=1.2.3.\left(4-0\right)+2.3.4\left(5-1\right)+3.4.5\left(6-2\right)+...+k\left(k+1\right)\left(k+2\right)\left(k+1-k-1\right)\)
\(4S=1.2.3.4-1.2.3.0+2.3.4.5-2.3.4+3.4.5.6-2.3.4.5+...+k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\)
\(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
\(4S=\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
\(\Rightarrow\)\(4S+1=\left(k-1\right)k\left(k+1\right)\left(k+2\right)+1\)
Lại có tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương ( muốn chứng minh thì mình chứng minh luôn )
Vậy \(4S+1\) là bình phương của một số tự nhiên
Chúc bạn học tốt ~
S=1.2.3+2.3.4+3.4.5+...+k(k+1)(k+2)
=> 4S=1.2.3.4+2.3.4.4+3.4.5.4+...+k(k+1)(k+2).4
<=> 4S=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+...+k(k+1)(k+2)[(k+3)-(k-1)]
<=> 4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+k(k+1)(k+2)(k+3)-(k-1).k(k+1)(k+2)(k+3)
=> 4S=k(k+1)(k+2)(k+3)
=> 4S+1=k(k+1)(k+2)(k+3)+1 = k(k+3)(k+1)(k+2)+1 = (k2+3k)(k2+3k+2)+1
Đặt: n=k2+3k
=> 4S+1 = n(n+2)+1 = n2+2n+1 = (n+1)2.
=> 4S+1 = (k2+3k+1)2.
=> (4S+1) là bình phương của 1 số tự nhiên có giá trị là: (k2+3k+1)
Ví dụ: k=5 thì 4S+1=(25+15+1)2=412
\(\text{Charlotte :'(}\)
Giải phương trình.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{637}{2550}\) \(\left(\text{*}\right)\)
\(ĐKXĐ:\) \(x\ne0;\) \(x\ne-1;\) và \(x\ne-2\)
Ta có:
\(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
\(\frac{1}{3.4.5}=\frac{1}{2}\left(\frac{1}{3.4}-\frac{1}{4.5}\right)\)
\(.....................\)
\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{1}{2}\left(\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)
Khi đó, phương trình \(\left(\text{*}\right)\) tương đương với
\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{637}{2550}\)
\(\Leftrightarrow\) \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{637}{2550}\)
\(\Leftrightarrow\) \(\frac{1}{4}-\frac{1}{2\left(x+1\right)\left(x+2\right)}=\frac{637}{2550}\)
\(\Leftrightarrow\) \(\frac{1}{2\left(x+1\right)\left(x+2\right)}=\frac{1}{5100}\)
\(\Rightarrow\) \(2\left(x+1\right)\left(x+2\right)=5100\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(x+2\right)=2550\)
\(\Leftrightarrow\) \(^{x_1=-52}_{x_2=49}\) (t/m điều kiện xác định)
Vậy, tập nghiệm của pt \(\left(\text{*}\right)\) là \(S=\left\{-52;49\right\}\)
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt