Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=17+17^2+17^3+...+17^{18}\)
⇔ \(S=\left(17+17^2+17^3\right)+...+\left(17^{16}+17^{17}+17^{18}\right)\)
⇔ \(S=17\left(1+17+17^2\right)+...+17^{16}\left(1+17+17^2\right)\)
⇔ \(S=17.307+...+17^{16}.307\)
⇔ \(S=307\left(17+17^4+...+17^{16}\right)\text{ ⋮ }307\)
Tham khảo nha Câu hỏi của Đỗ Thị Thu Trang - Toán lớp 6 - Học toán với OnlineMath
\(11^{18}+11^{17}-11^{16}.2\)
=\(\left(11^{18}-11^{16}\right)+\left(11^{17}-11^{16}\right)\)
=\(11^{16}\left(11^2-1\right)+11^{16}\left(11-1\right)\)
=\(11^{16}.120+11^{16}.10\)
=\(11^{16}.130\) chia hết cho 130
Ta có :
\(43^{43}=43^{42}.43=\left(43^2\right)^{21}.43=\overline{.....9}^{21}.43=\overline{.....9}.43=\overline{......7}\)
\(17^{17}=17^{16}.17=\left(17^2\right)^8.17=\overline{.....9}^8.17=\overline{......1}.17=\overline{.....7}\)
\(\Rightarrow43^{43}-17^{17}=\overline{.......7}-\overline{.......7}=\overline{......0}⋮10\)(đpcm)
Ta có : 4343 - 1717 = 4340.433 - 1716.17 = 434.10 . 79507 - 174.4 . 17 = (.....1).79507 - (.....1).17 = (.......7) - (......7) = 0
Vì 4343 - 1717 có chữ số tận cùng là 0
Nên 4343 - 1717 chia hết cho 10
Vậy A = 4343 - 1717 chia hết cho 10
Hãy kích cho mk nha vì mk sẽ làm cho bn
519+518+517
= 516(5 + 52 + 53)
= 516 x 155
= 516 x 5 x31
=>519+518+517chia hết cho 31
Ta có 519+518+517=517.(52+5+1)=517.31
Vậy 519+518+517 chia hết cho 31
S = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)
S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307
S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307
Có tất cả số hạng ở biểu thức S là:
(18-1):1+1=18(số)
Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng
S=17+17^2+17^3+.......+17^18
S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)
S=17.(1+17+17^2)+........+17^16.(1+17+17^2)
S=17.307+.............+17^16.307
S=307.(17+........+17^16) chia hết cho 307
Vậy S chia hết cho 307
~shizadon~
\(S=17+17^2+17^3+.......+17^{18}\)
\(S=\left(17+17^2+17^3\right)+\left(17^4+17^5+17^6\right)+............+\left(17^{16}+17^{17}+17^{18}\right)\)
\(S=17\left(1+17+17^2\right)+17^4\left(1+17+17^2\right)+.................+17^{16}\left(1+17+17^2\right)\)
\(S=307\left(17+17^4+.............+17^{16}\right)⋮307\)