Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
\(S=4+3^2+3^3+3^4+.....+3^{99}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right).\left(1+3^4+...+3^{96}\right)\)
\(=40\left(1+3^4+...+3^{96}\right)\) \(⋮40\) (đpcm)
xét \(3S=12+3^3+3^4+....+3^{100}\)
nên 3S-S=2S=\(3^{100}-3^2-4+12=3^{100}-1\)
=>S=\(\frac{3^{100}-1}{2}\)
Ta thấy \(3^2\equiv-1\left(mod5\right)\)nên \(3^{100}\equiv1\left(mod5\right)=>S⋮5\) (1)
ta có\(3^4\equiv1\left(mod16\right)\)nên \(3^{100}\equiv1\left(mod16\right)\)=>\(S⋮8\) (2)
từ (1) (2) =>S\(⋮40\left(đpcm\right)\)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
S = 3100 - 1
Ad cho xin ý kiến vs ạ