Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)3S=3(1+3+32+33+...+32012)
3S=3+32+33+...+32013
3S-S=(3+32+33+...+32013)-(1+3+32+33+...+32012)
2S=32013-1
Vậy 2S ko fai số chính phương
B1:
\(A=2+2^2+2^3+...+2^{10}\\ \Rightarrow2A=2^2+2^3+2^4+...+2^{11}\\ 2A-A=\left(2^2+2^3+2^4+...+2^{11}\right)-\left(2+2^2+2^3+...+2^{10}\right)\\ A=2^{11}-1=2048-1=2047\)
B2:
Gọi số đó là a (ĐK: a ∈ N*)
Ta có: a chia cho 148 dư 111
\(\Rightarrow a=148b+111\left(b\in N\right)\)
Mà \(148b⋮37;111⋮37\)
\(\Rightarrow148b+111⋮37\Leftrightarrow a⋮37\)
B3:
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2 (ĐK: a ∈ N)
Ta có: a + a + 1 + a + 2 = (a + a + a) + (1 + 2) = 3a + 3 = 3(a + 3) ⋮ 3
Vậy tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
B4:
Gọi 4 số tự nhiên liên tiếp là a; a+1; a+2; a+3 (ĐK: a ∈ N)
Ta có: a + a + 1 + a + 2 + a + 3 = (a + a + a + a) + (1 + 2 + 3) = 4a + 6
Mà \(4a⋮4\); \(6⋮̸4\)
\(\Rightarrow4a+6⋮4̸\)
Vậy tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
không có tận cùng bằng 2 vì 1+2=3,1+2+3=6 ; 3+6=9 vì chữ số đầu có kết quả là một số lẻ nên đằng sau có cộng bao nhiêu số chẵn,lẻ nào cũng ko có chữ số tận cùng là những số chẵn
a,ta có dạng tổng quát : 1^2+2^2+...+n^2=n.(n+1).(2n+1)/6 nên A=101.(101+1).(2.101+1)/6
Suy ra : A=348551 là số lẻ
b,2A=2.101.(101+1).(2.101+1)/6=348551.2
Suy ra 348551.2 có tận cùng là 1.2=2.Mà một số chính phương( hay bình phương) không thể có tận cùng là 2 nên 2A không là bình phương của 1 số nguyên
Giải
Ta có:
A= abc; B= abcabc
abc.7.11.13=abc.1001=abcabc
=> abcabc :7:11:13 = abc
S=1+3+\(3^2\)+\(3^3\)+.....+\(3^{2012}\)
S=(1+3)+(\(3^2\)+\(3^3\))+.......+(\(3^{2011}\)+\(3^{2012}\))
S=4+\(3^2\).(1+3)+.......+\(3^{2011}\)(1+3)
S=4+4.\(3^2\)+....+4.\(3^{2011}\)
S=4.(1+\(3^2\)+.....+\(3^{2011}\))\(⋮\)4
Vậy S chia hết cho 4
\(S=1+3+3^2+3^3+...+3^{2012}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2010}+3^{2011}\right)+3^{2012}\)
\(S=4+3^2\left(1+3\right)+...+3^{2010}\left(1+3\right)+3^{4\times503}\)
\(S=4+3^2\times4+...+3^{2010}\times4+\left(.....1\right)\) (các chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n thì chữ số tận cùng là 1)
mà \(\left(.....1\right)⋮̸4\)
\(\Rightarrow S⋮̸4\)
Chúc bạn học tốt