Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
S= \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
S= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 -1/6 +1/6 - 1/7 + 1/7 - 1/8
S= 1/2 - 1/ 8
S= 3/8
S= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8
= 1/2 - 1/3 + 1/3 - ...+ 1/7 - 1/8
= 1/2 - 1/8
= 3/8
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
Mỗi phân số \(\frac{1}{11},\frac{1}{12},\frac{1}{13},...,\frac{1}{19}\)đều lớn hơn \(\frac{1}{20}\)
Do đó,\(S>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}(\)10 dãy \()\)
\(\Rightarrow S>\frac{10}{20}=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\)
\(⋮\)
\(\frac{1}{20}=\frac{1}{20}\)
Suy ra \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(có 10 số \(\frac{1}{20}\))
A=(1/2+1/12+1/13+1/14+1/15)+(1/16+1/17+1/18+1/19+1/20)
Thay các phân số trong mỗi nhóm bởi phân số nhỏ nhất, ta có:
A> 1/15.5+1/20.5=1/3+1/4= 7/12>1/2
Suy ra A>1/2
Vậy A> 1/2
Đặt S=1/6+1/12+1/20+1/30+1/42+1/56+1/72
=> S=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=> S=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=> S=1/2-1/9
=> S=7/18
Vì 7/18<1/2
=> S<1/2
Mọi người k mik nhé, :)))
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8-1/9
= 1/2 - 1/9
= 7/18
Bn tự so sánh vs 1/2 nha
S = 1 2 + 1 6 + 1 12 + 1 20 + 1 30 + 1 42 = 1 1.2 + 1 2.3 + 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 = 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 = 1 − 1 7 < 1
So sánh: S < 1.