Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\).
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
Suy ra (S-P)^2013 = 0
link này nè bn!
https://olm.vn/hoi-dap/detail/103540952175.html
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
(S-P)^2013 = 0
S-P= (1 - 1/2 + 1/3 - 1/4 +...+ 1/2011 - 1/2012 + 1/2013) - ( 1/1007 + 1/1008 +...+ 1/2012 + 1/2013 )
S-P= (1- 1/2 + ... + 1/1005 - 1/1006) - 2.(1/1008 + 1/1010 + 1/1012 +...+ 1/2012)
S-P= 1+1/2+1/3+...+1/1006 - 2.( 1/2 + 1/4 + 1/6 +...+ 1/2012)
S-P= 1 + 1/2 + 1/3 +...+ 1/1006 - ( 1+ 1/2 + 1/3 +...+ 1/1006 )
S-P= 0
⇒ (S-P)^2013 = 0
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}=P\)
=>(S-P)2013=02013=0
Biển Cửa Lò, chùa Thiên mụ, núi Ngũ Hành Sơn, chùa Cầu Hội An, kinh thành Huế, đèo Hải Vân
🐼🐼🐼
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1006}\)
\(=\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}+\frac{1}{2013}\left(1\right)\)
Mà \(P=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow S=P\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Vậy...
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)
=> S = P => (S - P)2013 = 0
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)
\(\Rightarrow S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}\)\(=P\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
Tík cho mik nha!
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Ta có :
\(S=\left(1+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1006}\right)\)
\(=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}=P\)
\(\Rightarrow\left(s-p\right)^{2013}=0^{2013}=0\)